2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes.

  • Hanna Tukachinsky‎ et al.
  • The Journal of cell biology‎
  • 2010‎

In vertebrates, Hedgehog (Hh) signaling initiated in primary cilia activates the membrane protein Smoothened (Smo) and leads to activation of Gli proteins, the transcriptional effectors of the pathway. In the absence of signaling, Gli proteins are inhibited by the cytoplasmic protein Suppressor of Fused (SuFu). It is unclear how Hh activates Gli and whether it directly regulates SuFu. We find that Hh stimulation quickly recruits endogenous SuFu-Gli complexes to cilia, suggesting a model in which Smo activates Gli by relieving inhibition by SuFu. In support of this model, we find that Hh causes rapid dissociation of the SuFu-Gli complex, thus allowing Gli to enter the nucleus and activate transcription. Activation of protein kinase A (PKA), an inhibitor of Hh signaling, blocks ciliary localization of SuFu-Gli complexes, which in turn prevents their dissociation by signaling. Our results support a simple mechanism in which Hh signals at vertebrate cilia cause dissociation of inactive SuFu-Gli complexes, a process inhibited by PKA.


Mismatch repair-deficient prostate cancer with parenchymal brain metastases treated with immune checkpoint blockade.

  • Laura A Sena‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2021‎

Parenchymal brain metastases from prostate cancer are unusual and are associated with poor prognosis. Given the rarity of this entity, little is known about its molecular and histologic characteristics. Here we describe a patient with metastatic castration-resistant, mismatch repair-deficient (dMMR) prostate cancer with parenchymal brain metastases. Analysis of a brain metastasis revealed MLH1 loss consistent with dMMR, yet few tumor-infiltrating lymphocytes (TILs). He was treated with immune checkpoint blockade (ICB) and exhibited an extra-central nervous system (CNS) systemic response but CNS progression. Subsequent assessment of a brain metastasis following ICB treatment surprisingly showed increased TIL density and depletion of macrophages, suggestive of an enhanced antitumor immune response. Post-treatment tumoral DNA sequencing did not reveal acquired mutations that might confer resistance to ICB. This is the first description of ICB therapy for a patient with prostate cancer with parenchymal brain metastases, with pre- and post-treatment immunogenomic analyses.


Potential pathogenic germline variant reporting from tumor comprehensive genomic profiling complements classic approaches to germline testing.

  • Nadine Tung‎ et al.
  • NPJ precision oncology‎
  • 2023‎

Existing guidance regarding clinically informed germline testing for patients with cancer is effective for evaluation of classic hereditary cancer syndromes and established gene/cancer type associations. However, current screening methods may miss patients with rare, reduced penetrance, or otherwise occult hereditary risk. Secondary finding of suspected germline variants that may confer inherited cancer risk via tumor comprehensive genomic profiling (CGP) has the potential to help address these limitations. However, reporting practices for secondary finding of germline variants are inconsistent, necessitating solutions for transparent and coherent communication of these potentially important findings. A workflow for improved confidence detection and clear reporting of potential pathogenic germline variants (PPGV) in select cancer susceptibility genes (CSG) was applied to a research dataset from real-world clinical tumor CGP of > 125,000 patients with advanced cancer. The presence and patterns of PPGVs identified across tumor types was assessed with a focus on scenarios in which traditional clinical germline evaluation may have been insufficient to capture genetic risk. PPGVs were identified in 9.7% of tumor CGP cases using tissue- and liquid-based assays across a broad range of cancer types, including in a number of "off-tumor" contexts. Overall, PPGVs were identified in a similar proportion of cancers with National Comprehensive Cancer Network (NCCN) recommendations for germline testing regardless of family history (11%) as in all other cancer types (9%). These findings suggest that tumor CGP can serve as a tool that is complementary to traditional germline genetic evaluation in helping to ascertain inherited susceptibility in patients with advanced cancer.


Pan-Cancer Interrogation of MUTYH Variants Reveals Biallelic Inactivation and Defective Base Excision Repair Across a Spectrum of Solid Tumors.

  • Channing J Paller‎ et al.
  • JCO precision oncology‎
  • 2024‎

Biallelic germline pathogenic variants of the base excision repair (BER) pathway gene MUTYH predispose to colorectal cancer (CRC) and other cancers. The possible association of heterozygous variants with broader cancer susceptibility remains uncertain. This study investigated the prevalence and consequences of pathogenic MUTYH variants and MUTYH loss of heterozygosity (LOH) in a large pan-cancer analysis.


Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network.

  • Songyu Wang‎ et al.
  • eLife‎
  • 2016‎

In higher eukaryotes, the endoplasmic reticulum (ER) contains a network of membrane tubules, which transitions into sheets during mitosis. Network formation involves curvature-stabilizing proteins, including the reticulons (Rtns), as well as the membrane-fusing GTPase atlastin (ATL) and the lunapark protein (Lnp). Here, we have analyzed how these proteins cooperate. ATL is needed to not only form, but also maintain, the ER network. Maintenance requires a balance between ATL and Rtn, as too little ATL activity or too high Rtn4a concentrations cause ER fragmentation. Lnp only affects the abundance of three-way junctions and tubules. We suggest a model in which ATL-mediated fusion counteracts the instability of free tubule ends. ATL tethers and fuses tubules stabilized by the Rtns, and transiently sits in newly formed three-way junctions. Lnp subsequently moves into the junctional sheets and forms oligomers. Lnp is inactivated by mitotic phosphorylation, which contributes to the tubule-to-sheet conversion of the ER.


Processing and turnover of the Hedgehog protein in the endoplasmic reticulum.

  • Xin Chen‎ et al.
  • The Journal of cell biology‎
  • 2011‎

The Hedgehog (Hh) signaling pathway has important functions during metazoan development. The Hh ligand is generated from a precursor by self-cleavage, which requires a free cysteine in the C-terminal part of the protein and results in the production of the cholesterol-modified ligand and a C-terminal fragment. In this paper, we demonstrate that these reactions occur in the endoplasmic reticulum (ER). The catalytic cysteine needs to form a disulfide bridge with a conserved cysteine, which is subsequently reduced by protein disulfide isomerase. Generation of the C-terminal fragment is followed by its ER-associated degradation (ERAD), providing the first example of an endogenous luminal ERAD substrate that is constitutively degraded. This process requires the ubiquitin ligase Hrd1, its partner Sel1, the cytosolic adenosine triphosphatase p97, and degradation by the proteasome. Processing-defective mutants of Hh are degraded by the same ERAD components. Thus, processing of the Hh precursor competes with its rapid degradation, explaining the impaired Hh signaling of processing-defective mutants, such as those causing human holoprosencephaly.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: