Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 40 papers

Defined MicroRNAs Induce Aspects of Maturation in Mouse and Human Embryonic-Stem-Cell-Derived Cardiomyocytes.

  • Desy S Lee‎ et al.
  • Cell reports‎
  • 2015‎

Pluripotent-cell-derived cardiomyocytes have great potential for use in research and medicine, but limitations in their maturity currently constrain their usefulness. Here, we report a method for improving features of maturation in murine and human embryonic-stem-cell-derived cardiomyocytes (m/hESC-CMs). We found that coculturing m/hESC-CMs with endothelial cells improves their maturity and upregulates several microRNAs. Delivering four of these microRNAs, miR-125b-5p, miR-199a-5p, miR-221, and miR-222 (miR-combo), to m/hESC-CMs resulted in improved sarcomere alignment and calcium handling, a more negative resting membrane potential, and increased expression of cardiomyocyte maturation markers. Although this could not fully phenocopy all adult cardiomyocyte characteristics, these effects persisted for two months following delivery of miR-combo. A luciferase assay demonstrated that all four miRNAs target ErbB4, and siRNA knockdown of ErbB4 partially recapitulated the effects of miR-combo. In summary, a combination of miRNAs induced via endothelial coculture improved ESC-CM maturity, in part through suppression of ErbB4 signaling.


Generation of induced pluripotent stem cells (IBMSi011-A) from a patient with Parkinson's disease carrying LRRK2 p.I1371V mutation.

  • Han-I Lin‎ et al.
  • Stem cell research‎
  • 2019‎

Leucine rich repeat kinase 2 (LRRK2) is the causative gene for autosomal-dominant familial forms of Parkinson's disease (PD). Here, we generated induced pluripotent stem cells (iPSCs) from the peripheral blood mononuclear cells of a female patient with LRRK2 c.4111A > G (p.I1371V) mutation by using the Sendai-virus delivery system. The resulting iPSCs had a normal karyotype. The iPSCs also showed pluripotency confirmed by immunofluorescent staining and differentiated into the three germ layers in vivo. This cellular model will provide a platform for studying the role of LRRK2 in the disease process.


Commensal gut microbiota-derived acetate and propionate enhance heart adaptation in response to cardiac pressure overload in mice.

  • Chen-Ju Lin‎ et al.
  • Theranostics‎
  • 2022‎

Background: The gut microbiota plays a vital role in maintaining tissue homeostasis and regulating disease pathophysiology; however, the underlying mechanisms remain to be elucidated. We previously showed that mice depleted of gut microbiota with antibiotics (ABX mice) were more prone to cardiac rupture after infarction, suggesting that the gut microbiota impacts cardiac structural remodeling following injury. Here, we aimed to determine whether the gut microbiota is required for adaptive cardiac remodeling in response to pressure overload stress. Methods: Transverse aortic constriction (TAC) surgery was performed and cardiac function was evaluated by echocardiography and catheterization, followed by mechanical tests and extracellular matrix (ECM) studies. Germ-free mice with cecal microbiota transplantation were used for validation. 16S ribosomal DNA sequencing and PICRUSt2 analysis were applied to predict the key metabolic pathways. ABX mice were supplemented with the derived metabolic products and their efficacy was tested. To elucidate the underlying mechanism, we isolated mouse primary cardiac fibroblasts and treated them with the metabolites. Lastly, G-coupled protein receptor 41 (GPR41) and GPR43 double knockdown cardiac fibroblasts were generated and the anti-fibrogenic effect of metabolites was determined. Results: Cardiac hypertrophy and dysfunction were more severe in ABX-TAC mice compared to the controls. Moreover, TAC-induced fibrosis was more profound in ABX hearts, which was accompanied by disrupted ECM structure making the heart tissues mechanically weaker and more brittle. Reconstruction of healthy gut microbiota in germ-free mice successfully restored cardiac function and prevented excessive fibrosis and ECM disarray under stress. Furthermore, functional prediction identified acetate and propionate as critical mediators in the gut microbiota-modulated cardiac mechanics. Supplementation of acetate and propionate improved heart function, attenuated fibrosis, and reversed ECM disarray after TAC. In addition, treating primary cardiac fibroblasts with acetate and propionate attenuated cell contraction, inhibited myofibroblast formation, and reduced collagen formation after TGF-β1 stimulus. Finally, knocking down GPR41 and GPR43 receptors in cardiac fibroblasts blunted the inhibitory effects of acetate and propionate. Conclusions: The gut microbiota is a potential therapeutic target for cardiac ECM remodeling and heart structural integrity. By establishing a healthy gut microbiome or replenishing the derived metabolites, we could improve cardiac health under dysbiosis after pressure-overload stress.


Gut butyrate-producers confer post-infarction cardiac protection.

  • Hung-Chih Chen‎ et al.
  • Nature communications‎
  • 2023‎

The gut microbiome and its metabolites are increasingly implicated in several cardiovascular diseases, but their role in human myocardial infarction (MI) injury responses have yet to be established. To address this, we examined stool samples from 77 ST-elevation MI (STEMI) patients using 16 S V3-V4 next-generation sequencing, metagenomics and machine learning. Our analysis identified an enriched population of butyrate-producing bacteria. These findings were then validated using a controlled ischemia/reperfusion model using eight nonhuman primates. To elucidate mechanisms, we inoculated gnotobiotic mice with these bacteria and found that they can produce beta-hydroxybutyrate, supporting cardiac function post-MI. This was further confirmed using HMGCS2-deficient mice which lack endogenous ketogenesis and have poor outcomes after MI. Inoculation increased plasma ketone levels and provided significant improvements in cardiac function post-MI. Together, this demonstrates a previously unknown role of gut butyrate-producers in the post-MI response.


The hemocompatibility of oxidized diamond nanocrystals for biomedical applications.

  • Hung-Cheng Li‎ et al.
  • Scientific reports‎
  • 2013‎

Low-dimensional carbon-based nanomaterials have recently received enormous attention for biomedical applications. However, increasing evidence indicates that they are cytotoxic and can cause inflammatory responses in the body. Here, we show that monocrystalline nanodiamonds (NDs) synthesized by high-pressure-high-temperature (HPHT) methods and purified by air oxidation and strong oxidative acid treatments have excellent hemocompatibility with negligible hemolytic and thrombogenic activities. Cell viability assays with human primary endothelial cells suggested that the oxidized HPHT-NDs (dimensions of 35-500 nm) are non-cytotoxic. No significant elevation of the inflammatory cytokine levels of IL-1β and IL-6 was detected in mice after intravenous injection of the nanocrystals in vivo. Using a hindlimb-ischemia mouse model, we demonstrated that 35-nm NDs after covalent conjugation with polyarginine are useful as a drug delivery vehicle of heparin for prolonged anticoagulation treatment. The present study lays a solid foundation for further therapeutic applications of NDs in biomedicine.


Fibroblast growth factor-10 promotes cardiomyocyte differentiation from embryonic and induced pluripotent stem cells.

  • Sunny Sun-Kin Chan‎ et al.
  • PloS one‎
  • 2010‎

The fibroblast growth factor (FGF) family is essential to normal heart development. Yet, its contribution to cardiomyocyte differentiation from stem cells has not been systemically studied. In this study, we examined the mechanisms and characters of cardiomyocyte differentiation from FGF family protein treated embryonic stem (ES) cells and induced pluripotent stem (iPS) cells.


Human iPSC banking: barriers and opportunities.

  • Ching-Ying Huang‎ et al.
  • Journal of biomedical science‎
  • 2019‎

The introduction of induced pluripotent stem cells (iPSCs) has opened up the potential for personalized cell therapies and ushered in new opportunities for regenerative medicine, disease modeling, iPSC-based drug discovery and toxicity assessment. Over the past 10 years, several initiatives have been established that aim to collect and generate a large amount of human iPSCs for scientific research purposes. In this review, we compare the construction and operation strategy of some iPSC banks as well as their ongoing development. We also introduce the technical challenges and offer future perspectives pertaining to the establishment and management of iPSC banks.


Generation of a gene corrected human isogenic IBMS-iPSC-014-C from polycystic-kidney-disease induced pluripotent stem cell line using CRISPR/Cas9.

  • Chun-Lin Liu‎ et al.
  • Stem cell research‎
  • 2020‎

We report the engendering an isogenic iPSC line from the IBMS-iPSC-014-05 with homozygous correction of the R803X, Chr4: 88989098C > T in PKD2, using CRISPR/Cas9 technology. The results from the isogenic control, IBMS-iPSC-014-05C, showed that mutation had been corrected, while maintaining normal morphology, pluripotency, and differentiation capacity into three germ layers.


Generation of induced pluripotent stem cells derived from an autosomal dominant polycystic kidney disease patient with a p.Ser1457fs mutation in PKD1.

  • Ching-Ying Huang‎ et al.
  • Stem cell research‎
  • 2017‎

Autosomal dominant polycystic kidney disease is one of the most prevalent forms of inherited cystic kidney disease, and can be characterized by kidney cyst formation and enlargement. Here we report the generation of a Type 1 ADPKD disease iPS cell line, IBMS-iPSC-012-12, which retains the conserved deletion of PKD1, normal karyotype and exhibits the properties of pluripotent stem cells such as ES-like morphology, expression of pluripotent markers and capacity to differentiate into all three germ layers. Our results show that we have successfully generated a patient-specific iPS cell line with a mutation in PKD1 for study of renal disease pathophysiology.


Cardiac-specific microRNA-125b deficiency induces perinatal death and cardiac hypertrophy.

  • Chen-Yun Chen‎ et al.
  • Scientific reports‎
  • 2021‎

MicroRNA-125b, the first microRNA to be identified, is known to promote cardiomyocyte maturation from embryonic stem cells; however, its physiological role remains unclear. To investigate the role of miR-125b in cardiovascular biology, cardiac-specific miR-125b-1 knockout mice were generated. We found that cardiac-specific miR-125b-1 knockout mice displayed half the miR-125b expression of control mice resulting in a 60% perinatal death rate. However, the surviving mice developed hearts with cardiac hypertrophy. The cardiomyocytes in both neonatal and adult mice displayed abnormal mitochondrial morphology. In the deficient neonatal hearts, there was an increase in mitochondrial DNA, but total ATP production was reduced. In addition, both the respiratory complex proteins in mitochondria and mitochondrial transcription machinery were impaired. Mechanistically, using transcriptome and proteome analysis, we found that many proteins involved in fatty acid metabolism were significantly downregulated in miR-125b knockout mice which resulted in reduced fatty acid metabolism. Importantly, many of these proteins are expressed in the mitochondria. We conclude that miR-125b deficiency causes a high mortality rate in neonates and cardiac hypertrophy in adult mice. The dysregulation of fatty acid metabolism may be responsible for the cardiac defect in the miR-125b deficient mice.


Prostaglandin E2 Receptor 2 Modulates Macrophage Activity for Cardiac Repair.

  • Jasmine M F Wu‎ et al.
  • Journal of the American Heart Association‎
  • 2018‎

Background Prostaglandin E2 has long been known to be an immune modulator. It is released after tissue injury and plays a role in modulating macrophage activities, which are essential for tissue regeneration. However, the involvement of prostaglandin E2 receptor 2 ( EP 2)-dependent regulation of macrophages in postischemic heart is unclear. This study aims to evaluate the role of EP 2 in damaged heart. Methods and Results The effect of EP 2 in postischemic heart was evaluated using EP 2-deficient transgenic mice. We demonstrated that cardiac function was worse after myocardial injury on loss of EP 2. Furthermore, EP 2 deficiency also altered proinflammatory response and resulted in a defect in macrophage recruitment to the injured myocardium. Transcriptome analysis revealed that the expression of erythroid differentiation regulator 1 ( Erdr1) was significantly induced in EP 2-deficient macrophages. Knocking down Erdr1 expression restored migration ability of EP 2-deficient cells both in vitro and in vivo. By using a genetic fate-mapping approach, we showed that abolishment of EP 2 expression effectively attenuated cell replenishment. Conclusions The EP 2-dependent signaling pathway plays a critical role in regulating macrophage recruitment to the injured myocardium, thereby exerting a function in modulating the inflammatory microenvironment for cardiac repair.


Prostaglandin E₂ promotes post-infarction cardiomyocyte replenishment by endogenous stem cells.

  • Ying-Chang Hsueh‎ et al.
  • EMBO molecular medicine‎
  • 2014‎

Although self-renewal ability of adult mammalian heart has been reported, few pharmacological treatments are known to promote cardiomyocyte regeneration after injury. In this study, we demonstrate that the critical period of stem/progenitor cell-mediated cardiomyocyte replenishment is initiated within 7 days and saturates on day 10 post-infarction. Moreover, blocking the inflammatory reaction with COX-2 inhibitors may also reduce the capability of endogenous stem/progenitor cells to repopulate lost cells. Injection of the COX-2 product PGE2 enhances cardiomyocyte replenishment in young mice and recovers cell renewal through attenuating TGF-β1 signaling in aged mice. Further analyses suggest that cardiac stem cells are PGE2-responsive and that PGE2 may regulate stem cell activity directly through the EP2 receptor or indirectly by modulating its micro-environment in vivo. Our findings provide evidence that PGE2 holds great potential for cardiac regeneration.


Biocompatible, Purified VEGF-A mRNA Improves Cardiac Function after Intracardiac Injection 1 Week Post-myocardial Infarction in Swine.

  • Leif Carlsson‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2018‎

mRNA can direct dose-dependent protein expression in cardiac muscle without genome integration, but to date has not been shown to improve cardiac function in a safe, clinically applicable way. Herein, we report that a purified and optimized mRNA in a biocompatible citrate-saline formulation is tissue specific, long acting, and does not stimulate an immune response. In small- and large-animal, permanent occlusion myocardial infarction models, VEGF-A 165 mRNA improves systolic ventricular function and limits myocardial damage. Following a single administration a week post-infarction in mini pigs, left ventricular ejection fraction, inotropy, and ventricular compliance improved, border zone arteriolar and capillary density increased, and myocardial fibrosis decreased at 2 months post-treatment. Purified VEGF-A mRNA establishes the feasibility of improving cardiac function in the sub-acute therapeutic window and may represent a new class of therapies for ischemic injury.


Generation of novel induced pluripotent stem cell (iPSC) line from a 16-year-old sialidosis patient with NEU-1 gene mutation.

  • Shih-Ping Liu‎ et al.
  • Stem cell research‎
  • 2018‎

Sialidosis is a rare autosomal recessive disorder that affects the intralysosomal catabolism of sialylated glycoconjugates and is involved in cellular immune response. Mutations in NEU1, which encodes the sialidase enzyme, result in sialidosis. Sialidosis is characterized by the progressive lysosomal storage of sialylated glycopeptides and oligosaccharides. In this study, we used Sendai virus reprogramming to generate an induced pluripotent stem cell (iPSC) line carrying the A544G mutation combined with the 667-679 deletion of the NEU1 gene from a sialidosis patient. The patient-specific iPSCs expressed pluripotent markers, possessed a normal karyotype, and displayed the capability to differentiate into three germ layers.


Copy number variant hotspots in Han Taiwanese population induced pluripotent stem cell lines - lessons from establishing the Taiwan human disease iPSC Consortium Bank.

  • Ching-Ying Huang‎ et al.
  • Journal of biomedical science‎
  • 2020‎

The Taiwan Human Disease iPSC Service Consortium was established to accelerate Taiwan's growing stem cell research initiatives and provide a platform for researchers interested in utilizing induced pluripotent stem cell (iPSC) technology. The consortium has generated and characterized 83 iPSC lines: 11 normal and 72 disease iPSC lines covering 21 different diseases, several of which are of high incidence in Taiwan. Whether there are any reprogramming-induced recurrent copy number variant (CNV) hotspots in iPSCs is still largely unknown.


Generation of a human induced pluripotent stem cell (iPSC) line (IBMS-iPSC-048-05) from a patient with ALS and parkinsonism having a hexanucleotide repeat expansion mutation in C9orf72 gene.

  • Han-Yi Lin‎ et al.
  • Stem cell research‎
  • 2020‎

A hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) gene causes a heterogeneous neurodegenerative disorder that includes amyotrophic lateral sclerosis (ALS), frontotemporal degeneration (FTD), and parkinsonism. Here, we used the Sendai virus delivery system to generate induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells of a male patient with an increased hexanucleotide repeat expansion in C9orf72. The resulting iPSCs exhibited pluripotency, confirmed by immunofluorescent staining for pluripotency markers, and differentiated into three germ layers in vivo. This cellular model will provide a useful platform for further pathophysiological studies of C9orf72-related neurodegeneration.


Hypoxia-induced H19/YB-1 cascade modulates cardiac remodeling after infarction.

  • Oi Kuan Choong‎ et al.
  • Theranostics‎
  • 2019‎

Rationale: Long non-coding RNA (lncRNAs) has been identified as a pivotal novel regulators in cardiac development as well as cardiac pathogenesis. lncRNA H19 is known as a fetal gene but it is exclusively abundant in the heart and skeletal muscles in adulthood, and is evolutionarily conserved in humans and mice. It has been reported to possess a significant correlation with the risk of coronary artery diseases. However, the function of H19 is not well characterized in heart. Methods: Loss-of-function and gain-of-function mouse models with left anterior descending coronary artery-ligation surgery were utilized to evaluate the functionality of H19 in vivo. For mechanistic studies, hypoxia condition were exerted in in vitro models to mimic cardiac ischemic injury. Chromatin isolation by RNA immunoprecipitation (ChIRP) was performed to reveal the interacting protein of lncRNA H19. Results: lncRNA H19 was significantly upregulated in the infarct area post-surgery day 4 in mouse model. Ectopic expression of H19 in the mouse heart resulted in severe cardiac dilation and fibrosis. Several extracellular matrix (ECM) genes were significantly upregulated. While genetic ablation of H19 by CRISPR-Cas9 ameliorated post-MI cardiac remodeling with reduced expression in ECM genes. Through chromatin isolation by RNA purification (ChIRP), we identified Y-box-binding protein (YB)-1, a suppressor of Collagen 1A1, as an interacting protein of H19. Furthermore, H19 acted to antagonize YB-1 through direct interaction under hypoxia, which resulted in de-repression of Collagen 1A1 expression and cardiac fibrosis. Conclusions: Together these results demonstrate that lncRNA H19 and its interacting protein YB-1 are crucial for ECM regulation during cardiac remodeling.


Utrophin Compensates dystrophin Loss during Mouse Spermatogenesis.

  • Hung-Chih Chen‎ et al.
  • Scientific reports‎
  • 2017‎

Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder resulting from mutations in the dystrophin gene. The mdx/utrn -/- mouse, lacking in both dystrophin and its autosomal homologue utrophin, is commonly used to model the clinical symptoms of DMD. Interestingly, these mice are infertile but the mechanisms underlying this phenomenon remain unclear. Using dystrophin deficient mdx mouse and utrophin haplodeficient mdx/utrn +/- mouse models, we demonstrate the contribution of Dp427 (full-length dystrophin) and utrophin to testis and epididymis development, as well as spermatogenesis. We show that Dp427 deficiency disturbed the balance between proliferation and apoptosis of germ cells during spermatogenesis, which was further disrupted with utrophin haplodeficiency, deciphering a compensatory role of utrophin for dystrophin in the male reproductive system. In the spermatozoa, we have found a compensatory response of utrophin to dystrophin deficiency - namely the upregulation and relocation of utrophin to the flagellar midpiece. This study demonstrates the contribution of Dp427 and utrophin in male fertility, suggesting a potential pathology in DMD patients.


The HER2 inhibitor lapatinib potentiates doxorubicin-induced cardiotoxicity through iNOS signaling.

  • Wan-Tseng Hsu‎ et al.
  • Theranostics‎
  • 2018‎

Rationale: Lapatinib (LAP) is a crucial alternative to trastuzumab upon the onset of drug resistance during treatment of metastatic human epidermal growth factor receptor 2-positive breast cancer. Like trastuzumab, LAP is commonly used alongside anthracyclines as a combination therapy, due to enhanced anti-cancer efficacy. However, this is notably associated with cardiotoxicity so it is imperative to understand the mechanisms driving this cardiotoxicity and develop cardioprotective strategies. To this end, here we utilize human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), which exhibit several characteristics representative of in vivo cardiomyocytes that make them breakthrough models to study drug toxicity. Methods: We investigated LAP- and doxorubicin (DOX)-induced toxicity in hPSC-CMs and evaluated the involvement of inducible nitric oxide (NO) synthase (iNOS). The significance of iNOS-mediated cardiotoxicity was furthermore evaluated in animal studies. Results: LAP synergistically increased DOX toxicity in hPSC-CMs in a dose- and time-dependent manner. At concentrations that were otherwise non-apoptotic when administered separately, LAP significantly potentiated DOX-induced hPSC-CM apoptosis. This was accompanied by increased iNOS expression and pronounced production of NO. iNOS inhibition significantly reduced hPSC-CM sensitivity to LAP and DOX co-treatment (LAP-plus-DOX), leading to reduced apoptosis. Consistent with our observations in vitro, delivery of an iNOS inhibitor in mice treated with LAP-plus-DOX attenuated myocardial apoptosis and systolic dysfunction. Moreover, inhibition of iNOS did not compromise the anti-cancer potency of LAP-plus-DOX in a murine breast cancer xenograft model. Conclusions: Our findings suggest that iNOS inhibition is a promising cardioprotective strategy to accompany HER2-inhibitor/anthracycline combination therapies. Furthermore, these results support the promise of hPSC-CMs as a platform for investigating cardiotoxicity and developing cardioprotectants as a whole.


Primary cardiac manifestation of autosomal dominant polycystic kidney disease revealed by patient induced pluripotent stem cell-derived cardiomyocytes.

  • Jia-Jung Lee‎ et al.
  • EBioMedicine‎
  • 2019‎

Mutations in PKD1 or PKD2 gene lead to autosomal dominant polycystic kidney disease (ADPKD). The mechanism of ADPKD progression and its link to increased cardiovascular mortality is still elusive.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: