2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 55 papers

Fast Detection of Sclerotinia Sclerotiorum on Oilseed Rape Leaves Using Low-Altitude Remote Sensing Technology.

  • Feng Cao‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2018‎

Sclerotinia sclerotiorum, one of the major diseases infecting oilseed rape leaves, has seriously affected crop yield and quality. In this study, an indoor unmanned aerial vehicle (UAV) low-altitude remote sensing simulation platform was built for disease detection. Thermal, multispectral and RGB images were acquired before and after being artificially inoculated with Sclerotinia sclerotiorum on oilseed rape leaves. New image registration and fusion methods based on scale-invariant feature transform (SIFT) were presented to construct a fused database using multi-model images. The changes of temperature distribution in different sections of infected areas were analyzed by processing thermal images, the maximum temperature difference (MTD) on a single leaf reached 1.7 degrees Celsius 24 h after infection. Four machine learning models were established using thermal images and fused images respectively, including support vector machine (SVM), random forest (RF), K-nearest neighbor (KNN) and naïve Bayes (NB). The results demonstrated that the classification accuracy was improved by 11.3% after image fusion, and the SVM model obtained a classification accuracy of 90.0% on the task of classifying disease severity. The overall results indicated the UAV low-altitude remote sensing simulation platform equipped with multi-sensors could be used to early detect Sclerotinia sclerotiorum on oilseed rape leaves.


Transcriptome phase distribution analysis reveals diurnal regulated biological processes and key pathways in rice flag leaves and seedling leaves.

  • Wenying Xu‎ et al.
  • PloS one‎
  • 2011‎

Plant diurnal oscillation is a 24-hour period based variation. The correlation between diurnal genes and biological pathways was widely revealed by microarray analysis in different species. Rice (Oryza sativa) is the major food staple for about half of the world's population. The rice flag leaf is essential in providing photosynthates to the grain filling. However, there is still no comprehensive view about the diurnal transcriptome for rice leaves. In this study, we applied rice microarray to monitor the rhythmically expressed genes in rice seedling and flag leaves. We developed a new computational analysis approach and identified 6,266 (10.96%) diurnal probe sets in seedling leaves, 13,773 (24.08%) diurnal probe sets in flag leaves. About 65% of overall transcription factors were identified as flag leaf preferred. In seedling leaves, the peak of phase distribution was from 2:00am to 4:00am, whereas in flag leaves, the peak was from 8:00pm to 2:00am. The diurnal phase distribution analysis of gene ontology (GO) and cis-element enrichment indicated that, some important processes were waken by the light, such as photosynthesis and abiotic stimulus, while some genes related to the nuclear and ribosome involved processes were active mostly during the switch time of light to dark. The starch and sucrose metabolism pathway genes also showed diurnal phase. We conducted comparison analysis between Arabidopsis and rice leaf transcriptome throughout the diurnal cycle. In summary, our analysis approach is feasible for relatively unbiased identification of diurnal transcripts, efficiently detecting some special periodic patterns with non-sinusoidal periodic patterns. Compared to the rice flag leaves, the gene transcription levels of seedling leaves were relatively limited to the diurnal rhythm. Our comprehensive microarray analysis of seedling and flag leaves of rice provided an overview of the rice diurnal transcriptome and indicated some diurnal regulated biological processes and key functional pathways in rice.


Prognostic values of a novel multi-mRNA signature for predicting relapse of cholangiocarcinoma.

  • Han Guo‎ et al.
  • International journal of biological sciences‎
  • 2020‎

Cholangiocarcinoma (CCA) is an epithelial cancer and has high death and recurrence rates, current methods cannot satisfy the need for predicting cancer relapse effectively. So, we aimed at conducting a multi-mRNA signature to improve the relapse prediction of CCA. We analyzed mRNA expression profiling in large CCA cohorts from the Gene Expression Omnibus (GEO) database (GSE76297, GSE32879, GSE26566, GSE31370, and GSE45001) and The Cancer Genome Atlas (TCGA) database. The Least absolute shrinkage and selection operator (LASSO) regression model was used to establish a 7-mRNA-based signature that was significantly related to the recurrence-free survival (RFS) in two test series. Based on the 7-mRNA signature, the cohort TCGA patients could be divided into high-risk or low-risk subgroups with significantly different RFS [p < 0.001, hazard ratio (HR): 48.886, 95% confidence interval (CI): 6.226-3.837E+02]. Simultaneously, the prognostic value of the 7-mRNA signature was confirmed in clinical samples of Ren Ji hospital (p < 0.001, HR: 4.558, 95% CI: 1.829-11.357). Further analysis including multivariable and sub-group analyses revealed that the 7-mRNA signature was an independent prognostic value for recurrence of patients with CCA. In conclusion, our results might provide an efficient tool for relapse prediction and were beneficial to individualized management for CCA patients.


Non-metabolic role of UCK2 links EGFR-AKT pathway activation to metastasis enhancement in hepatocellular carcinoma.

  • Jie Cai‎ et al.
  • Oncogenesis‎
  • 2020‎

Up-regulation of Uridine-cytidine kinase 2 (UCK2), a rate-limiting enzyme of the pyrimidine salvage pathway, has been suggested in HCC, but the detailed molecular mechanisms and therapic role of UCK2 remain elusive. Bioinformatic analyses revealed that UCK2 might be a key up-regulated metabolic gene in HCCs. The expressional pattern and prognostic value of UCK2 were further examined in a large number of clinical samples. Functional assays based on site-directed mutagenesis showed that UCK2 promoted cell proliferation in a metabolic manner, but non-catalytically facilitates HCC metastasis. Mechanistically, in response to EGF, UCK2 interacted with EGFR to block EGF-induced EGFR ubiquitination and degradation, which resulted in elevated EGFR-AKT pathway activation and metastasis enhancement in HCCs. Concurrent pharmacological targeting on UCK2 and EGFR showed synergistic effects on HCC treatment. This study disclosed the non-metabolic role of UCK2 and suggested the therapeutic potential of concurrent blocking the metabolic and non-metabolic roles of UCK2 in HCC treatment.


A Chromosome-Level Genome of the Agile Gracile Mouse Opossum (Gracilinanus agilis).

  • Ran Tian‎ et al.
  • Genome biology and evolution‎
  • 2021‎

There are more than 100 species of American didelphid marsupials (opossums and mouse opossums). Limited genomic resources for didelphids exists, with only two publicly available genome assemblies compared with dozens in the case of their Australasian counterparts. This discrepancy impedes evolutionary and ecological research. To address this gap, we assembled a high-quality chromosome-level genome of the agile gracile mouse opossum (Gracilinanus agilis) using a combination of stLFR sequencing, polishing with mate-pair data, and anchoring onto pseudochromosomes using Hi-C. This species employs a rare life-history strategy, semelparity, and all G. agilis males and most females die at the end of their first breeding season after succumbing to stress and exhaustion. The 3.7-Gb chromosome-level assembly, with 92.6% anchored onto pseudochromosomes, has a scaffold N50 of 683.5 Mb and a contig N50 of 56.9 kb. The genome assembly shows high completeness, with a mammalian BUSCO score of 88.1%. Around 49.7% of the genome contains repetitive elements. Gene annotation yielded 24,425 genes, of which 83.9% were functionally annotated. The G. agilis genome is an important resource for future studies of marsupial biology, evolution, and conservation.


Highly Bendable and Durable Waterproof Paper for Ultra-High Electromagnetic Interference Shielding.

  • Fang Ren‎ et al.
  • Polymers‎
  • 2019‎

An efficient electromagnetic interference (EMI) shielding paper with excellent water repellency and mechanical flexibility has been developed, by assembling silver nanowires (AgNWs) and hydrophobic inorganic ceramic on the cellulose paper, via a facile dip-coating preparation. Scanning electron microscope (SEM) observations confirmed that AgNWs were interconnected and densely coated on both sides of the cellulose fiber, which endows the as-prepared paper with high conductivity (33.69 S/cm in-plane direction) at a low AgNW area density of 0.13 mg/cm2. Owing to multiple reflections and scattering between the two outer highly conductive surfaces, the obtained composite presented a high EMI shielding effectiveness (EMI SE) of up to 46 dB against the X band, and ultrahigh specific EMI SE of 271.2 dB mm-1. Moreover, the prepared hydrophobic AgNW/cellulose (H-AgNW/cellulose) composite paper could also maintain high EMI SE and extraordinary waterproofness (water contact angle > 140°) by suffering dozens of bending tests or one thousand peeling tests. Overall, such a multifunctional paper might have practical applications in packaging conductive components and can be used as EMI shielding elements in advanced application areas, even under harsh conditions.


Body Dimension Measurements of Qinchuan Cattle with Transfer Learning from LiDAR Sensing.

  • Lvwen Huang‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2019‎

For the time-consuming and stressful body measuring task of Qinchuan cattle and farmers, the demand for the automatic measurement of body dimensions has become more and more urgent. It is necessary to explore automatic measurements with deep learning to improve breeding efficiency and promote the development of industry. In this paper, a novel approach to measuring the body dimensions of live Qinchuan cattle with on transfer learning is proposed. Deep learning of the Kd-network was trained with classical three-dimensional (3D) point cloud datasets (PCD) of the ShapeNet datasets. After a series of processes of PCD sensed by the light detection and ranging (LiDAR) sensor, the cattle silhouettes could be extracted, which after augmentation could be applied as an input layer to the Kd-network. With the output of a convolutional layer of the trained deep model, the output layer of the deep model could be applied to pre-train the full connection network. The TrAdaBoost algorithm was employed to transfer the pre-trained convolutional layer and full connection of the deep model. To classify and recognize the PCD of the cattle silhouette, the average accuracy rate after training with transfer learning could reach up to 93.6%. On the basis of silhouette extraction, the candidate region of the feature surface shape could be extracted with mean curvature and Gaussian curvature. After the computation of the FPFH (fast point feature histogram) of the surface shape, the center of the feature surface could be recognized and the body dimensions of the cattle could finally be calculated. The experimental results showed that the comprehensive error of body dimensions was close to 2%, which could provide a feasible approach to the non-contact observations of the bodies of large physique livestock without any human intervention.


A gene signature is critical for intrahepatic cholangiocarcinoma stem cell self-renewal and chemotherapeutic response.

  • Lifeng Huang‎ et al.
  • Stem cell research & therapy‎
  • 2022‎

Improved understanding of the stemness regulation mechanism in intrahepatic cholangiocarcinoma (ICC) could identify targets and guidance for adjuvant transarterial chemoembolization (TACE).


Platelet Mitochondria Transplantation Rescues Hypoxia/Reoxygenation-Induced Mitochondrial Dysfunction and Neuronal Cell Death Involving the FUNDC2/PIP3/Akt/FOXO3a Axis.

  • Chun Shi‎ et al.
  • Cell transplantation‎
  • 2021‎

Mitochondrial transplantation emerges as a novel therapeutic solution for ischemia/reperfusion injury (IRI) in various tissues. Platelets have recently been used in mitochondrial transplantation as readily-available donors of small-size platelet mitochondria (plt-mito). Interestingly, FUN14 Domain Containing 2 (FUNDC2), a protein highly-expressed in the outer membrane (OMM) of plt-mito, has been identified to maintain platelet survival under hypoxic condition. The current study determined whether and how FUNDC2 contributed to the therapeutic effect of plt-mito transplantation for hypoxia/reoxygenation (HR) injury. The results showed that incorporation of human plt-mito into SH-SY5Y cells rescued HR-induced mitochondrial malfunction and mitochondrial apoptotic pathway. Mechanistically, plt-mito transplantation led to an increased expression of FUNDC2 in the recipient cells. This protein induced mitochondrial translocation of phosphatidylinositol-3,4,5-trisphosphate (PIP3) via its N-term, resulting in the stimulation of the protein kinase B (Akt)/forkhead box O3a (FOXO3a) pathway, which inhibited HR-induced mitochondrial accumulation of a mitochondrial target of FOXO3a, Bim, also known as a pro-apoptotic protein. Therefore, the FUNDC2/PIP3/Akt/FOXO3a axis may facilitate the incorporated plt-mito to restore mitochondrial function and cell viability of the recipient cells, and platelets may serve as readily-available sources of donor mitochondria that afford therapeutic benefits against IRI.


Downregulation of nutrition sensor GCN2 in macrophages contributes to poor wound healing in diabetes.

  • Yangxiao Hou‎ et al.
  • Cell reports‎
  • 2024‎

Poor skin wound healing, which is common in patients with diabetes, is related to imbalanced macrophage polarization. Here, we find that nutrition sensor GCN2 (general control nonderepressible 2) and its downstream are significantly upregulated in human skin wound tissue and mouse skin wound macrophages, but skin wound-related GCN2 expression and activity are significantly downregulated by diabetes and hyperglycemia. Using wound healing models of GCN2-deleted mice, bone marrow chimeric mice, and monocyte-transferred mice, we show that GCN2 deletion in macrophages significantly delays skin wound healing compared with wild-type mice by altering M1 and M2a/M2c polarization. Mechanistically, GCN2 inhibits M1 macrophages via OXPHOS-ROS-NF-κB pathway and promotes tissue-repairing M2a/M2c macrophages through eukaryotic translation initiation factor 2 (eIF2α)-hypoxia-inducible factor 1α (HIF1α)-glycolysis pathway. Importantly, local supplementation of GCN2 activator halofuginone efficiently restores wound healing in diabetic mice with re-balancing M1 and M2a/2c polarization. Thus, the decreased macrophage GCN2 expression and activity contribute to poor wound healing in diabetes and targeting GCN2 improves wound healing in diabetes.


In-line phase-contrast and grating-based phase-contrast synchrotron imaging study of brain micrometastasis of breast cancer.

  • Sheng Huang‎ et al.
  • Scientific reports‎
  • 2015‎

Current bio-medical imaging researches aim to detect brain micrometastasis in early stage for its increasing incidence and high mortality rates. Synchrotron phase-contrast imaging techniques, such as in-line phase-contrast (IPC) and grating-based phase-contrast (GPC) imaging, could provide a high spatial and density imaging study of biological specimens' 3D structures. In this study, we demonstrated the detection efficiencies of these two imaging tools on breast cancer micrometastasis in an ex vivo mouse brain. We found that both IPC and GPC can differentiate abnormal brain structures induced by micrometastasis from the surrounding normal tissues. We also found that GPC was more sensitive in detecting the small metastasis as compared to IPC.


Genome-Wide Analysis of the First Sequenced Mycoplasma capricolum subsp. capripneumoniae Strain M1601.

  • Shengli Chen‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2017‎

Mycoplasma capricolum subsp. capripneumoniae (Mccp) is a common pathogen of goats that causes contagious caprine pleuropneumonia. We closed the gap and corrected rRNA operons in the draft genome of Mccp M1601: a strain isolated from an infected goat in a farm in Gansu, China. The genome size of M1601 is 1,016,707 bp with a GC content of 23.67%. We identified 915 genes (occupying 90.27% of the genome), of which 713 are protein-coding genes (excluding 163 pseudogenes). No genomic islands and complete insertion sequences were found in the genome. Putative determinants associated with the organism's virulence were analyzed, and 26 genes (including one adhesion protein gene, two capsule synthesis gene clusters, two lipoproteins, hemolysin A, ClpB, and proteins involved in pyruvate metabolism and cation transport) were potential virulence factors. In addition, two transporter systems (ATP-binding cassette [ABC] transporters and phosphotransferase) and two secretion systems (Sec and signal recognition particle [SRP] pathways) were observed in the Mccp genome. Genome synteny analysis reveals a good collinear relationship between M1601 and Mccp type strain F38. Phylogenetic analysis based on 11 single-copy core genes of 31 Mycoplasma strains revealed good collinearity between M1601 and Mycoplasma capricolum subsp. capricolum (Mcc) and close relationship among Mycoplasma mycoides cluster strains. Our genome-wide analysis of Mccp M1601 provides helpful information on the pathogenic mechanisms and genetics of Mccp.


Effects of sintering temperature on surface morphology/microstructure, in vitro degradability, mineralization and osteoblast response to magnesium phosphate as biomedical material.

  • Zhiwei Wang‎ et al.
  • Scientific reports‎
  • 2017‎

Magnesium phosphate (MP) was fabricated using a chemical precipitation method, and the biological performances of MP sintered at different temperatures as a biomedical material was investigated. The results indicated that the densification and crystallinity of MP increased as the sintering temperature increased. As the sintering temperature increased, the degradability of MP in PBS decreased, and the mineralization ability in SBF significantly increased. In addition, the MP sintered at 800 °C (MP8) possessed the lowest degradability and highest mineralization ability. Moreover, the positive response of MG63 cells to MP significantly increased as the sintering temperature increased, and MP8 significantly promoted the cell spreading, proliferation, differentiation and expressions of osteogenic differentiation-related genes. Faster degradation of MP0 resulted in higher pH environments and ion concentrations, which led to negative responses to osteoblasts. However, the appropriate degradation of MP8 resulted in suitable pH environments and ion concentrations, which led to positive responses to osteoblasts. This study demonstrated that the sintering temperature substantially affected the surface morphology/microstructure, degradability and mineralization, and osteoblasts response to magnesium phosphate.


Lesion of intergeniculate leaflet GABAergic neurons attenuates sleep in mice exposed to light.

  • Huan-Ying Shi‎ et al.
  • Sleep‎
  • 2020‎

Light has immediate effects on sleep in rodents, but the neural pathways underlying the effect remain to be elucidated. The intergeniculate leaflet (IGL) containing GABAergic neurons receives direct retinal inputs. We hypothesized that IGL GABAergic neurons may mediate light-induced sleep. EEG/electromyogram recording, immunohistochemistry, electrophysiology, optogenetics, fiber photometry, behavioral tests, and cell-specific destruction were employed to investigate the role of IGL GABAergic neurons in the regulation of acute light-induced sleep. Here, EEG/electromyogram recordings revealed that acute light exposure during the nocturnal active phase in mice induced a significant increase in non-rapid eye movement and rapid eye movement sleep compared with controls. Immunohistochemistry showed that acute light exposure for 2 hours in the active phase induced an increase in c-Fos expression in the IGL, whereas lights-off in the rest phase inhibited it. Patch clamp coupled with optogenetics demonstrated that retinal ganglion cells had monosynaptic functional connections to IGL GABAergic neurons. Calcium activity by fiber photometry in freely behaving mice showed that light exposure increased the activity of IGL GABAergic neurons. Furthermore, lesion of IGL GABAergic neurons by caspase-3 virus significantly attenuated the sleep-promoting effect of light exposure during active phases. Collectively, these results clearly indicated that the IGL is one of key nuclei mediating light-induced sleep in mice.


Transfer of MicroRNA-216a-5p From Exosomes Secreted by Human Urine-Derived Stem Cells Reduces Renal Ischemia/Reperfusion Injury.

  • Yinmei Zhang‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

Human urine-derived stem cells (USCs) protect rats against kidney ischemia/reperfusion (I/R) injury. Here we investigated the role of USCs exosomes (USCs-Exos) in protecting tubular endothelial cells and miRNA transfer in the kidney. Human USCs and USCs-Exos were isolated and verified by morphology and specific biomarkers. USC-Exos played a protective role in human proximal tubular epithelial cells (HK-2) exposed to hypoxia/reoxygenation (H/R). USCs-Exos were rich in miR-216a-5p, which targeted phosphatase and tensin homolog (PTEN) and regulated cell apoptosis through the Akt pathway. In HK-2 cells exposed to H/R, incubation with USC-Exos increased miR-216-5p, decreased PTEN levels, and stimulated Akt phosphorylation. Exposure of hypoxic HK-2 cells to USCs-Exos pretreated with anti-miR-216a-5p can prevent the increase of miR-216-5p and Akt phosphorylation levels, restore PTEN expression, and promote apoptosis. The dual-luciferase reported gene assay in HK-2 cells confirmed that miR-216a-5p targeted PTEN. In rats with I/R injury, intravenous infusion of USCs-Exos can effectively induce apoptosis suppression and functional protection, which is associated with decreased PTEN. Infusion of exosomes from anti-miR-216a-5p-transfected USCs weakened the protective effect in the I/R model. Therefore, USCs-Exos can reduce renal I/R injury by transferring miR-216a-5p targeting PTEN. Potentially, USCs-Exos rich in miR-216a-5p can serve as a promising therapeutic option for AKI.


Efficacy and safety of thunder-fire moxibustion for patients with knee osteoarthritis: A protocol for systematic review and meta-analysis.

  • Qiaotong Huang‎ et al.
  • Medicine‎
  • 2021‎

Knee osteoarthritis (KOA) is a major public health issue because it causes pain and functional limitation in patients. Many studies have reported that moxibustion, a treatment in traditional Chinese medicine, is effective in treating KOA. The aim of this protocol is to develop a standard in advance for synthesize and assess the efficacy and safety of thunder-fire moxibustion for KOA from these randomized controlled trial.


Striatal neurons expressing dopamine D1 receptor promote wakefulness in mice.

  • Hui Dong‎ et al.
  • Current biology : CB‎
  • 2022‎

Patients with Parkinson's disease (PD) suffer from severe sleep disorders. Pathophysiology of the basal ganglia (BG) underlies PD, and the dorsal striatum represents the major input pathway of the BG. However, the roles and mechanisms of the dorsal striatum in controlling sleep-wake cycles remain unknown. To demonstrate the contribution of dopamine D1 receptor (D1R)-positive neurons within the dorsal striatum in promoting wakefulness, we combined optogenetic manipulations and fiber photometry with electroencephalography/electromyography recording in D1R-Cre mice. As a result, optogenetic activation of striatal D1R neurons induced immediate transitions from non-rapid eye movement (NREM) sleep to wakefulness, whereas inhibition of striatal D1R neurons attenuated wakefulness by chemogenetics. Multi-channel fiber photometry recordings revealed that the activity of striatal D1R neurons synchronized with that of BG upstreams, namely the prefrontal cortex and mediodorsal thalamus, in terms of immediate increase in activity during NREM-to-wake transitions and rapid decease during wake-to-NREM transitions. Further optogenetic manipulations revealed a prominent contribution of striatal D1R neurons in control of wakefulness by upstream, corticostriatal, thalamostriatal, and nigrostriatal projections and via downstream, striato-entopeduncular, or striatonigral pathways. Taken together, our findings revealed a circuit regulating wakefulness through striatal D1R neurons. Striatal D1R neurons play an important role in controlling wakefulness by integrating the corticostriatal, thalamostriatal, and nigrostriatal projections and innervation of striato-entopeduncular or striatonigral pathways.


Evolutionary impacts of purine metabolism genes on mammalian oxidative stress adaptation.

  • Ran Tian‎ et al.
  • Zoological research‎
  • 2022‎

Many mammals risk damage from oxidative stress stemming from frequent dives (i.e., cycles of ischemia/reperfusion and hypoxia/reoxygenation), high altitude and subterranean environments, or powered flight. Purine metabolism is an essential response to oxidative stress, and an imbalance between purine salvage and de novo biosynthesis pathways can generate damaging reactive oxygen species (ROS). Here, we examined the evolution of 117 purine metabolism-related genes to explore the accompanying molecular mechanisms of enhanced purine metabolism in mammals under high oxidative stress. We found that positively selected genes, convergent changes, and nonparallel amino acid substitutions are possibly associated with adaptation to oxidative stress in mammals. In particular, the evolution of convergent genes with cAMP and cGMP regulation roles may protect mammals from oxidative damage. Additionally, 32 genes were identified as under positive selection in cetaceans, including key purine salvage enzymes (i.e., HPRT1), suggesting improved re-utilization of non-recyclable purines avoid hypoxanthine accumulation and reduce oxidative stress. Most intriguingly, we found that six unique substitutions in cetacean xanthine dehydrogenase (XDH), an enzyme that regulates the generation of the ROS precursor xanthine oxidase (XO) during ischemic/hypoxic conditions, show enhanced enzyme activity and thermal stability and diminished XO conversion activity. These functional adaptations are likely beneficial for cetaceans by reducing radical oxygen species production during diving. In summary, our findings offer insights into the molecular and functional evolution of purine metabolism genes in mammalian oxidative stress adaptations.


Origin, loss, and regain of self-incompatibility in angiosperms.

  • Hong Zhao‎ et al.
  • The Plant cell‎
  • 2022‎

The self-incompatibility (SI) system with the broadest taxonomic distribution in angiosperms is based on multiple S-locus F-box genes (SLFs) tightly linked to an S-RNase termed type-1. Multiple SLFs collaborate to detoxify nonself S-RNases while being unable to detoxify self S-RNases. However, it is unclear how such a system evolved, because in an ancestral system with a single SLF, many nonself S-RNases would not be detoxified, giving low cross-fertilization rates. In addition, how the system has been maintained in the face of whole-genome duplications (WGDs) or lost in other lineages remains unclear. Here we show that SLFs from a broad range of species can detoxify S-RNases from Petunia with a high detoxification probability, suggestive of an ancestral feature enabling cross-fertilization and subsequently modified as additional SLFs evolved. We further show, based on its genomic signatures, that type-1 was likely maintained in many lineages, despite WGD, through deletion of duplicate S-loci. In other lineages, SI was lost either through S-locus deletions or by retaining duplications. Two deletion lineages regained SI through type-2 (Brassicaceae) or type-4 (Primulaceae), and one duplication lineage through type-3 (Papaveraceae) mechanisms. Thus, our results reveal a highly dynamic process behind the origin, maintenance, loss, and regain of SI.


Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals.

  • Ling Ni‎ et al.
  • Immunity‎
  • 2020‎

The World Health Organization has declared SARS-CoV-2 virus outbreak a worldwide pandemic. However, there is very limited understanding on the immune responses, especially adaptive immune responses to SARS-CoV-2 infection. Here, we collected blood from COVID-19 patients who have recently become virus-free, and therefore were discharged, and detected SARS-CoV-2-specific humoral and cellular immunity in eight newly discharged patients. Follow-up analysis on another cohort of six patients 2 weeks post discharge also revealed high titers of immunoglobulin G (IgG) antibodies. In all 14 patients tested, 13 displayed serum-neutralizing activities in a pseudotype entry assay. Notably, there was a strong correlation between neutralization antibody titers and the numbers of virus-specific T cells. Our work provides a basis for further analysis of protective immunity to SARS-CoV-2, and understanding the pathogenesis of COVID-19, especially in the severe cases. It also has implications in developing an effective vaccine to SARS-CoV-2 infection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: