Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Adipose-Derived Exosomes Exert Proatherogenic Effects by Regulating Macrophage Foam Cell Formation and Polarization.

  • Zulong Xie‎ et al.
  • Journal of the American Heart Association‎
  • 2018‎

Obesity is causally associated with atherosclerosis, and adipose tissue (AT)-derived exosomes may be implicated in the metabolic complications of obesity. However, the precise role of AT-exosomes in atherogenesis remains unclear. We herein aimed to assess the effect of AT-exosomes on macrophage foam cell formation and polarization and subsequent atherosclerosis development.


Cathepsin S Deficiency Mitigated Chronic Stress-Related Neointimal Hyperplasia in Mice.

  • Hailong Wang‎ et al.
  • Journal of the American Heart Association‎
  • 2019‎

Background Exposure to chronic psychosocial stress is a risk factor for atherosclerosis-based cardiovascular disease. We previously demonstrated the increased expressions of cathepsin S (CatS) in atherosclerotic lesions. Whether CatS participates directly in stress-related neointimal hyperplasia has been unknown. Methods and Results Male wild-type and CatS-deficient mice that underwent carotid ligation injury were subjected to chronic immobilization stress for morphological and biochemical studies at specific times. On day 14 after stress/surgery, stress enhanced the neointima formation. At the early time points, the stressed mice had increased plaque elastin disruption, cell proliferation, macrophage accumulation, mRNA and/or protein levels of vascular cell adhesion molecule-1, angiotensin II type 1 receptor, monocyte chemoattractant protein-1, gp91phox, stromal cell-derived factor-1, C-X-C chemokine receptor-4, toll-like receptor-2, toll-like receptor-4, SC 35, galectin-3, and CatS as well as targeted intracellular proliferating-related molecules (mammalian target of rapamycin, phosphorylated protein kinase B, and p-glycogen synthase kinase-3α/β). Stress also increased the plaque matrix metalloproteinase-9 and matrix metalloproteinase-2 mRNA expressions and activities and aorta-derived smooth muscle cell migration and proliferation. The genetic or pharmacological inhibition of CatS by its specific inhibitor (Z- FL -COCHO) ameliorated the stressed arterial targeted molecular and morphological changes and stressed aorta-derived smooth muscle cell migration. Both the genetic and pharmacological interventions had no effect on increased blood pressure in stressed mice. Conclusions These results demonstrate an essential role of CatS in chronic stress-related neointimal hyperplasia in response to injury, possibly via the reduction of toll-like receptor-2/toll-like receptor-4-mediated inflammation, immune action, and smooth muscle cell proliferation, suggesting that CatS will be a novel therapeutic target for stress-related atherosclerosis-based cardiovascular disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: