2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Detection and analysis of human papillomavirus (HPV) DNA in breast cancer patients by an effective method of HPV capture.

  • Ting Wang‎ et al.
  • PloS one‎
  • 2014‎

Despite an increase in the number of molecular epidemiological studies conducted in recent years to evaluate the association between human papillomavirus (HPV) and the risk of breast carcinoma, these studies remain inconclusive. Here we aim to detect HPV DNA in various tissues from patients with breast carcinoma using the method of HPV capture combined with massive paralleled sequencing (MPS). To validate the confidence of our methods, 15 cervical cancer samples were tested by PCR and the new method. Results showed that there was 100% consistence between the two methods.DNA from peripheral blood, tumor tissue, adjacent lymph nodes and adjacent normal tissue were collected from seven malignant breast cancer patients, and HPV type 16 (HPV16) was detected in 1/7, 1/7, 1/7 and 1/7 of patients respectively. Peripheral blood, tumor tissue and adjacent normal tissue were also collected from two patients with benign breast tumor, and 1/2, 2/2 and 2/2 was detected to have HPV16 DNA respectively. MPS metrics including mapping ratio, coverage, depth and SNVs were provided to characterize HPV in samples. The average coverage was 69% and 61.2% for malignant and benign samples respectively. 126 SNVs were identified in all 9 samples. The maximum number of SNVs was located in the gene of E2 and E4 among all samples. Our study not only provided an efficient method to capture HPV DNA, but detected the SNVS, coverage, SNV type and depth. The finding has provided further clue of association between HPV16 and breast cancer.


Transcription factor TFCP2L1 patterns cells in the mouse kidney collecting ducts.

  • Max Werth‎ et al.
  • eLife‎
  • 2017‎

Although most nephron segments contain one type of epithelial cell, the collecting ducts consists of at least two: intercalated (IC) and principal (PC) cells, which regulate acid-base and salt-water homeostasis, respectively. In adult kidneys, these cells are organized in rosettes suggesting functional interactions. Genetic studies in mouse revealed that transcription factor Tfcp2l1 coordinates IC and PC development. Tfcp2l1 induces the expression of IC specific genes, including specific H+-ATPase subunits and Jag1. Jag1 in turn, initiates Notch signaling in PCs but inhibits Notch signaling in ICs. Tfcp2l1 inactivation deletes ICs, whereas Jag1 inactivation results in the forfeiture of discrete IC and PC identities. Thus, Tfcp2l1 is a critical regulator of IC-PC patterning, acting cell-autonomously in ICs, and non-cell-autonomously in PCs. As a result, Tfcp2l1 regulates the diversification of cell types which is the central characteristic of 'salt and pepper' epithelia and distinguishes the collecting duct from all other nephron segments.


krCRISPR: an easy and efficient strategy for generating conditional knockout of essential genes in cells.

  • Bei Wang‎ et al.
  • Journal of biological engineering‎
  • 2019‎

CRISPR/Cas9 system is a powerful tool for knocking out genes in cells. However, genes essential for cell survival cannot be directly knocked out. Traditionally, generation of conditional knockout cells requires multiple steps.


A role for LSH in facilitating DNA methylation by DNMT1 through enhancing UHRF1 chromatin association.

  • Mengmeng Han‎ et al.
  • Nucleic acids research‎
  • 2020‎

LSH, a SNF2 family DNA helicase, is a key regulator of DNA methylation in mammals. How LSH facilitates DNA methylation is not well defined. While previous studies with mouse embryonic stem cells (mESc) and fibroblasts (MEFs) derived from Lsh knockout mice have revealed a role of Lsh in de novo DNA methylation by Dnmt3a/3b, here we report that LSH contributes to DNA methylation in various cell lines primarily by promoting DNA methylation by DNMT1. We show that loss of LSH has a much bigger effect in DNA methylation than loss of DNMT3A and DNMT3B. Mechanistically, we demonstrate that LSH interacts with UHRF1 but not DNMT1 and facilitates UHRF1 chromatin association and UHRF1-catalyzed histone H3 ubiquitination in an ATPase activity-dependent manner, which in turn promotes DNMT1 recruitment to replication fork and DNA methylation. Notably, UHRF1 also enhances LSH association with the replication fork. Thus, our study identifies LSH as an essential factor for DNA methylation by DNMT1 and provides novel insight into how a feed-forward loop between LSH and UHRF1 facilitates DNMT1-mediated maintenance of DNA methylation in chromatin.


Pharmacological inhibition of SETD7 by PFI-2 attenuates renal fibrosis following folic acid and obstruction injury.

  • Benquan Liu‎ et al.
  • European journal of pharmacology‎
  • 2021‎

Renal fibrosis is the common pathological hallmark of chronic kidney disease, and SET domain containing lysine methyltransferase 7 (SETD7) promote considerably renal fibrosis. However, the signaling mechanisms underlying SETD7 driving renal fibrosis are not fully understood. Here, we investigated the role of SETD7 in M2 macrophages-myofibroblasts transition and the myeloid fibroblasts activation in folic acid and obstruction-induced renal fibrosis. Mice treated with PFI-2, an inhibitor of SETD7, presented less bone marrow-derived myofibroblasts, fewer CD206+/α-smooth muscle actin + cells and developed less renal fibrosis (P<0.01). Furthermore, SETD7 inhibition reduced the infiltration of inflammatory cells and decreased the production of pro-inflammatory cytokines and chemokines in the kidneys after folic acid treatment (P<0.01). Finally, SETD7 inhibition suppressed the accumulation of NF-κB p65+ cells in folic acid nephropathy (P<0.01). Taken together, SETD7 mediates M2 macrophages-myofibroblasts transition, bone marrow-derived myofibroblasts activation, and inflammation response in the development of renal fibrosis.


USP7 negatively controls global DNA methylation by attenuating ubiquitinated histone-dependent DNMT1 recruitment.

  • Jialun Li‎ et al.
  • Cell discovery‎
  • 2020‎

Previous studies have implicated an essential role for UHRF1-mediated histone H3 ubiquitination in recruiting DNMT1 to replication sites for DNA maintenance methylation during S phase of the cell cycle. However, the regulatory mechanism on UHRF1-mediated histone ubiquitination is not clear. Here we present evidence that UHRF1 and USP7 oppositely control ubiquitination of histones H3 and H2B in S phase of the cell cycle and that DNMT1 binds both ubiquitinated H3 and H2B. USP7 knockout markedly increased the levels of ubiquitinated H3 and H2B in S phase, the association of DNMT1 with replication sites and importantly, led to a progressive increase of global DNA methylation shown with increased cell passages. Using DNMT3A/DNMT3B/USP7 triple knockout cells and various DNA methylation analyses, we demonstrated that USP7 knockout led to an overall elevation of DNA methylation levels. Mechanistic study demonstrated that USP7 suppresses DNMT1 recruitment and DNA methylation through its deubiquitinase activity and the interaction with DNMT1. Altogether our study provides evidence that USP7 is a negative regulator of global DNA methylation and that USP7 protects the genome from excessive DNA methylation by attenuating histone ubiquitination-dependent DNMT1 recruitment.


FBP1 /miR-24-1/enhancer axis activation blocks renal cell carcinoma progression via Warburg effect.

  • Dongen Ju‎ et al.
  • Frontiers in oncology‎
  • 2022‎

Warburg effect is a pivotal hallmark of cancers and appears prevalently in renal cell carcinoma (RCC). FBP1 plays a negative role in Warburg effect as a rate-limiting enzyme in gluconeogenesis, yet its mechanism in RCC remains to be further characterized. Herein, we revealed that FBP1 was downregulated in RCC tissue samples and was related to the poor survival rate of RCC. Strikingly, miR-24-1 whose DNA locus is overlapped with enhancer region chr9:95084940-95087024 was closely linked with the depletion of FBP1 in RCC. Of note, miRNAs like miR-24-1 whose DNA loci are enriched with H3K27ac and H3K4me1 modifications are belonging to nuclear activating miRNAs (NamiRNAs), which surprisingly upregulate target genes in RCC through enhancer beyond the conventional role of repressing target gene expression. Moreover, miR-24-1 reactivated the expression of FBP1 to suppress Warburg effect in RCC cells, and subsequently inhibited proliferation and metastasis of RCC cells. In mechanism, the activating role of miR-24-1 was dependent on enhancer integrity by dual luciferase reporter assay and CRISPR/Cas9 system. Ultimately, animal assay in vivo validated the suppressive function of FBP1 on 786-O and ACHN cells. Collectively, the current study highlighted that activation of FBP1 by enhancer-overlapped miR-24-1 is capable of contributing to Warburg effect repression through which RCC progression is robustly blocked, providing an alternative mechanism for RCC development and as well implying a potential clue for RCC treatment strategy.


Pharmacological Inhibition of STING/TBK1 Signaling Attenuates Myeloid Fibroblast Activation and Macrophage to Myofibroblast Transition in Renal Fibrosis.

  • Haimei Zeng‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Renal fibrosis is an important pathological biomarker of chronic kidney disease (CKD). Stimulator of interferon genes/TANK binding kinase 1 (STING/TBK1) axis has been identified as the main regulator of innate immune response and closely related to fibrotic disorder. However, the role of STING/TBK1 signaling pathway in kidney fibrosis is still unknown. In this study, we investigated the effect of pharmacological inhibition of STING/TBK1 signaling on renal fibrosis induced by folic acid (FA). In mice, TBK1 was significantly activated in interstitial cells of FA-injured kidneys, which was markedly inhibited by H-151 (a STING inhibitor) treatment. Specifically, pharmacological inhibition of STING impaired bone marrow-derived fibroblasts activation and macrophage to myofibroblast transition in folic acid nephropathy, leading to reduction of extracellular matrix proteins expression, myofibroblasts formation and development of renal fibrosis. Furthermore, pharmacological inhibition of TBK1 by GSK8612 reduced myeloid myofibroblasts accumulation and impeded macrophage to myofibroblast differentiation, resulting in less deposition of extracellular matrix protein and less severe fibrotic lesion in FA-injured kidneys. In cultured mouse bone marrow-derived monocytes, TGF-β1 activated STING/TBK1 signaling. This was abolished by STING or TBK1 inhibitor administration. In addition, GSK8612 treatment decreased levels of α-smooth muscle actin and extracellular matrix proteins and prevents bone marrow-derived macrophages to myofibroblasts transition in vitro. Collectively, our results revealed that STING/TBK1 signaling has a critical role in bone marrow-derived fibroblast activation, macrophages to myofibroblasts transition, and kidney fibrosis progression.


Negative regulation of DNMT3A de novo DNA methylation by frequently overexpressed UHRF family proteins as a mechanism for widespread DNA hypomethylation in cancer.

  • Yuanhui Jia‎ et al.
  • Cell discovery‎
  • 2016‎

Global DNA hypomethylation is a most common epigenetic alteration in cancer, but the mechanism remains elusive. Previous studies demonstrate that UHRF1 but not UHRF2 is required for mediating DNA maintenance methylation by DNMT1. Here we report unexpectedly a conserved function for UHRF1 and UHRF2: inhibiting de novo DNA methylation by functioning as E3 ligases promoting DNMT3A degradation. UHRF1/2 are frequently overexpressed in cancers and we present evidence that UHRF1/2 overexpression downregulates DNMT3A proteins and consequently leads to DNA hypomethylation. Abrogating this negative regulation on DNMT3A or overexpression of DNMT3A leads to increased DNA methylation and impaired tumor growth. We propose a working model that UHRF1/2 safeguards the fidelity of DNA methylation and suggests that UHRF1/2 overexpression is likely a causal factor for widespread DNA hypomethylation in cancer via suppressing DNMT3A.


Dissecting the precise role of H3K9 methylation in crosstalk with DNA maintenance methylation in mammals.

  • Qian Zhao‎ et al.
  • Nature communications‎
  • 2016‎

In mammals it is unclear if UHRF1-mediated DNA maintenance methylation by DNMT1 is strictly dependent on histone H3K9 methylation. Here we have generated an Uhrf1 knockin (KI) mouse model that specifically abolishes the H3K9me2/3-binding activity of Uhrf1. The homozygous Uhrf1 KI mice are viable and fertile, and exhibit ∼10% reduction of DNA methylation in various tissues. The reduced DNA methylation occurs globally in the genome and does not restrict only to the H3K9me2/3 enriched repetitive sequences. In vitro UHRF1 binds with higher affinity to reconstituted nucleosome with hemi-methylated CpGs than that with H3K9me2/3, although it binds cooperatively to nucleosome with both modifications. We also show that the nucleosome positioning affects the binding of methylated DNA by UHRF1. Thus, while our study supports a role for H3K9 methylation in promoting DNA methylation, it demonstrates for the first time that DNA maintenance methylation in mammals is largely independent of H3K9 methylation.


Hymecromone: a clinical prescription hyaluronan inhibitor for efficiently blocking COVID-19 progression.

  • Shuai Yang‎ et al.
  • Signal transduction and targeted therapy‎
  • 2022‎

Currently, there is no effective drugs for treating clinically COVID-19 except dexamethasone. We previously revealed that human identical sequences of SARS-CoV-2 promote the COVID-19 progression by upregulating hyaluronic acid (HA). As the inhibitor of HA synthesis, hymecromone is an approved prescription drug used for treating biliary spasm. Here, we aimed to investigate the relation between HA and COVID-19, and evaluate the therapeutic effects of hymecromone on COVID-19. Firstly, HA was closely relevant to clinical parameters, including lymphocytes (n = 158; r = -0.50; P < 0.0001), C-reactive protein (n = 156; r = 0.55; P < 0.0001), D-dimer (n = 154; r = 0.38; P < 0.0001), and fibrinogen (n = 152; r = 0.37; P < 0.0001), as well as the mass (n = 78; r = 0.43; P < 0.0001) and volume (n = 78; r = 0.41; P = 0.0002) of ground-glass opacity, the mass (n = 78; r = 0.48; P < 0.0001) and volume (n = 78; r = 0.47; P < 0.0001) of consolidation in patient with low level of hyaluronan (HA < 48.43 ng/mL). Furthermore, hyaluronan could directly cause mouse pulmonary lesions. Besides, hymecromone remarkably reduced HA via downregulating HAS2/HAS3 expression. Moreover, 89% patients with hymecromone treatment had pulmonary lesion absorption while only 42% patients in control group had pulmonary lesion absorption (P < 0.0001). In addition, lymphocytes recovered more quickly in hymecromone-treated patients (n = 8) than control group (n = 5) (P < 0.05). These findings suggest that hymecromone is a promising drug for COVID-19 and deserves our further efforts to determine its effect in a larger cohort.


Multiple Biomarker-Combined Screening for Colorectal Cancer Based on Bisulfate Conversion-Free Detection of Fecal DNA Methylation.

  • Chong Liu‎ et al.
  • BioMed research international‎
  • 2021‎

To evaluate the applicability of bisulfate conversion-free methylation assay based on enzyme digestion in fecal screening for colorectal cancer (CRC). Stool samples were collected from a total of 1142 participants with intestinal abnormalities, including 180 positive cases, 60 advanced adenomas, and 902 negative cases. DNA from reference cell lines and clinical samples was extracted and digested with an enzyme to detect the methylation of CRC markers SEPT9, SDC2, NDRG4, SFRP2, and BMP3 genes. Statistical analysis was then used to determine the ability of the markers, both individually and in combination, to detect CRC and adenoma. Our results showed that the enzyme digestion method could suitably detect DNA marker methylation in as low as 1% of the cell lines. BMP3 had a considerably low detection rate in all clinical samples, with only 6 positive cases detected out of 180 cancer samples. Our findings showed that the combination of SEPT9, SDC2, and SFRP2 had an area under the receiver operation curve of 0.937, sensitivity of 94.11%, and specificity of 89.21% for detecting CRC. Moreover, the detection sensitivity of adenoma can also reach 38.33%. After innovatively utilizing bisulfate conversion-free methylation assay for CRC screening, this study verified the potential clinical applicability of combining multiple biomarkers for CRC screening in a large number of samples.


Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network.

  • Ying Liang‎ et al.
  • Nucleic acids research‎
  • 2021‎

Dysfunction of Tumour Suppressor Genes (TSGs) is a common feature in carcinogenesis. Epigenetic abnormalities including DNA hypermethylation or aberrant histone modifications in promoter regions have been described for interpreting TSG inactivation. However, in many instances, how TSGs are silenced in tumours are largely unknown. Given that miRNA with low expression in tumours is another recognized signature, we hypothesize that low expression of miRNA may reduce the activity of TSG related enhancers and further lead to inactivation of TSG during cancer development. Here, we reported that low expression of miRNA in cancer as a recognized signature leads to loss of function of TSGs in breast cancer. In 157 paired breast cancer and adjacent normal samples, tumour suppressor gene GPER1 and miR-339 are both downregulated in Luminal A/B and Triple Negative Breast Cancer subtypes. Mechanistic investigations revealed that miR-339 upregulates GPER1 expression in breast cancer cells by switching on the GPER1 enhancer, which can be blocked by enhancer deletion through the CRISPR/Cas9 system. Collectively, our findings reveal novel mechanistic insights into TSG dysfunction in cancer development, and provide evidence that reactivation of TSG by enhancer switching may be a promising alternative strategy for clinical breast cancer treatment.


SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network.

  • Wei Li‎ et al.
  • EBioMedicine‎
  • 2022‎

Since late 2019, SARS-CoV-2 infection has resulted in COVID-19 accompanied by diverse clinical manifestations. However, the underlying mechanism of how SARS-CoV-2 interacts with host and develops multiple symptoms is largely unexplored.


Guide Positioning Sequencing identifies aberrant DNA methylation patterns that alter cell identity and tumor-immune surveillance networks.

  • Jin Li‎ et al.
  • Genome research‎
  • 2019‎

Aberrant DNA methylation is a distinguishing feature of cancer. Yet, how methylation affects immune surveillance and tumor metastasis remains ambiguous. We introduce a novel method, Guide Positioning Sequencing (GPS), for precisely detecting whole-genome DNA methylation with cytosine coverage as high as 96% and unbiased coverage of GC-rich and repetitive regions. Systematic comparisons of GPS with whole-genome bisulfite sequencing (WGBS) found that methylation difference between gene body and promoter is an effective predictor of gene expression with a correlation coefficient of 0.67 (GPS) versus 0.33 (WGBS). Moreover, Methylation Boundary Shift (MBS) in promoters or enhancers is capable of modulating expression of genes associated with immunity and tumor metabolism. Furthermore, aberrant DNA methylation results in tissue-specific enhancer switching, which is responsible for altering cell identity during liver cancer development. Altogether, we demonstrate that GPS is a powerful tool with improved accuracy and efficiency over WGBS in simultaneously detecting genome-wide DNA methylation and genomic variation. Using GPS, we show that aberrant DNA methylation is associated with altering cell identity and immune surveillance networks, which may contribute to tumorigenesis and metastasis.


Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia.

  • Xue Gao‎ et al.
  • Nature communications‎
  • 2016‎

Besides the conventional carbon sources, acetyl-CoA has recently been shown to be generated from acetate in various types of cancers, where it promotes lipid synthesis and tumour growth. The underlying mechanism, however, remains largely unknown. We find that acetate induces a hyperacetylated state of histone H3 in hypoxic cells. Acetate predominately activates lipogenic genes ACACA and FASN expression by increasing H3K9, H3K27 and H3K56 acetylation levels at their promoter regions, thus enhancing de novo lipid synthesis, which combines with its function as the metabolic precursor for fatty acid synthesis. Acetyl-CoA synthetases (ACSS1, ACSS2) are involved in this acetate-mediated epigenetic regulation. More importantly, human hepatocellular carcinoma with high ACSS1/2 expression exhibit increased histone H3 acetylation and FASN expression. Taken together, this study demonstrates that acetate, in addition to its ability to induce fatty acid synthesis as an immediate metabolic precursor, also functions as an epigenetic metabolite to promote cancer cell survival under hypoxic stress.


The Ngal reporter mouse detects the response of the kidney to injury in real time.

  • Neal Paragas‎ et al.
  • Nature medicine‎
  • 2011‎

Many proteins have been proposed to act as surrogate markers of organ damage, yet for many candidates the essential biomarker characteristics that link the protein to the injured organ have not yet been described. We generated an Ngal reporter mouse by inserting a double-fusion reporter gene encoding luciferase-2 and mCherry (Luc2-mC) into the Ngal (Lcn2) locus. The Ngal-Luc2-mC reporter accurately recapitulated the endogenous message and illuminated injuries in vivo in real time. In the kidney, Ngal-Luc2-mC imaging showed a sensitive, rapid, dose-dependent, reversible, and organ- and cell-specific relationship with tubular stress, which correlated with the level of urinary Ngal (uNgal). Unexpectedly, specific cells of the distal nephron were the source of uNgal. Cells isolated from Ngal-Luc2-mC mice also revealed both the onset and the resolution of the injury, and the actions of NF-κB inhibitors and antibiotics during infection. Thus, imaging of Ngal-Luc2-mC mice and cells identified injurious and reparative agents that affect kidney damage.


Tumor suppressor genes are reactivated by miR-26A1 via enhancer reprogramming in NSCLC.

  • Hongling Li‎ et al.
  • Human molecular genetics‎
  • 2023‎

Non-small cell lung cancer (NSCLC) is one of the most malignant epithelial tumors. Studies have suggested that DNA hypermethylation of promoters and abnormal histone modifications could induce tumor suppressor genes (TSGs) downregulation in NSCLC. However, the exact mechanism of TSGs downregulation remains unclear. In this study, we found that there is no difference in the regions of most TSGs promoters in NSCLC. Moreover, we found that there is no DNA methylation difference in the region of VILL promoter in NSCLC compared with adjacent tissue samples by pyrosequencing. We further demonstrated that VILL was markedly reactivated in A549 and H1703 cells infected with miR-26A1 lentivirus while this activation was inhibited by JQ1, an enhancer inhibitor. In addition, we identified that miR-26A1 could function as a tumor suppressor to inhibit proliferation and metastasis of NSCLC cells. Chromatin immunoprecipitation assays revealed that overexpression of miR-26A1 could significantly induce the enrichment of H3K27ac at the enhancer regions in A549 cells. To sum up, our findings revealed that enhancer-mediated TSGs regulation occured in NSCLC, suggesting that miR-26A1 could serve as a key regulator and may be a potential therapeutic target for NSCLC.


PCDHGB7 hypermethylation-based Cervical cancer Methylation (CerMe) detection for the triage of high-risk human papillomavirus-positive women: a prospective cohort study.

  • Dan Cao‎ et al.
  • BMC medicine‎
  • 2024‎

Implementation of high-risk human papillomavirus (hrHPV) screening has greatly reduced the incidence and mortality of cervical cancer. However, a triage strategy that is effective, noninvasive, and independent from the subjective interpretation of pathologists is urgently required to decrease unnecessary colposcopy referrals in hrHPV-positive women.


Value of M2BP in predicting in-stent restenosis in patients after coronary drug-eluting stent implantation.

  • Le Yang‎ et al.
  • Clinical cardiology‎
  • 2022‎

We evaluated the association between plasma levels of mac-2 binding protein (M2BP) with the risk of in-stent restenosis (ISR) after percutaneous coronary intervention (PCI).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: