Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Network analysis of epidermal growth factor signaling using integrated genomic, proteomic and phosphorylation data.

  • Katrina M Waters‎ et al.
  • PloS one‎
  • 2012‎

To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF) using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response.


An integrated model of epidermal growth factor receptor trafficking and signal transduction.

  • Haluk Resat‎ et al.
  • Biophysical journal‎
  • 2003‎

Endocytic trafficking of many types of receptors can have profound effects on subsequent signaling events. Quantitative models of these processes, however, have usually considered trafficking and signaling independently. Here, we present an integrated model of both the trafficking and signaling pathway of the epidermal growth factor receptor (EGFR) using a probability weighted-dynamic Monte Carlo simulation. Our model consists of hundreds of distinct endocytic compartments and approximately 13,000 reactions/events that occur over a broad spatio-temporal range. By using a realistic multicompartment model, we can investigate the distribution of the receptors among cellular compartments as well as their potential signal transduction characteristics. Our new model also allows the incorporation of physiochemical aspects of ligand-receptor interactions, such as pH-dependent binding in different endosomal compartments. To determine the utility of this approach, we simulated the differential activation of the EGFR by two of its ligands, epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha). Our simulations predict that when EGFR is activated with TGF-alpha, receptor activation is biased toward the cell surface whereas EGF produces a signaling bias toward the endosomal compartment. Experiments confirm these predictions from our model and simulations. Our model accurately predicts the kinetics and extent of receptor downregulation induced by either EGF or TGF-alpha. Our results suggest that receptor trafficking controls the compartmental bias of signal transduction, rather than simply modulating signal magnitude. Our model provides a new approach to evaluating the complex effect of receptor trafficking on signal transduction. Importantly, the stochastic and compartmental nature of the simulation allows these models to be directly tested by high-throughput approaches, such as quantitative image analysis.


A Phosphoproteomics Data Resource for Systems-level Modeling of Kinase Signaling Networks.

  • Song Feng‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Building mechanistic models of kinase-driven signaling pathways requires quantitative measurements of protein phosphorylation across physiologically relevant conditions, but this is rarely done because of the insensitivity of traditional technologies. By using a multiplexed deep phosphoproteome profiling workflow, we were able to generate a deep phosphoproteomics dataset of the EGFR-MAPK pathway in non-transformed MCF10A cells across physiological ligand concentrations with a time resolution of <12 min and in the presence and absence of multiple kinase inhibitors. An improved phosphosite mapping technique allowed us to reliably identify >46,000 phosphorylation sites on >6600 proteins, of which >4500 sites from 2110 proteins displayed a >2-fold increase in phosphorylation in response to EGF. This data was then placed into a cellular context by linking it to 15 previously published protein databases. We found that our results were consistent with much, but not all previously reported data regarding the activation and negative feedback phosphorylation of core EGFR-ERK pathway proteins. We also found that EGFR signaling is biphasic with substrates downstream of RAS/MAPK activation showing a maximum response at <3ng/ml EGF while direct substrates, such as HGS and STAT5B, showing no saturation. We found that RAS activation is mediated by at least 3 parallel pathways, two of which depend on PTPN11. There appears to be an approximately 4-minute delay in pathway activation at the step between RAS and RAF, but subsequent pathway phosphorylation was extremely rapid. Approximately 80 proteins showed a >2-fold increase in phosphorylation across all experiments and these proteins had a significantly higher median number of phosphorylation sites (~18) relative to total cellular phosphoproteins (~4). Over 60% of EGF-stimulated phosphoproteins were downstream of MAPK and included mediators of cellular processes such as gene transcription, transport, signal transduction and cytoskeletal arrangement. Their phosphorylation was either linear with respect to MAPK activation or biphasic, corresponding to the biphasic signaling seen at the level of the EGFR. This deep, integrated phosphoproteomics data resource should be useful in building mechanistic models of EGFR and MAPK signaling and for understanding how downstream responses are regulated.


Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics.

  • Becky M Hess‎ et al.
  • PloS one‎
  • 2013‎

The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes, as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding system level regulation and control of the pathway. To address these limitations, we examined Bacillus subtilis grown under multiple conditions and determined the relationship between altered isoprene production and gene expression patterns. We found that with respect to the amount of isoprene produced, terpenoid genes fall into two distinct subsets with opposing correlations. The group whose expression levels positively correlated with isoprene production included dxs, which is responsible for the commitment step in the pathway, ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome-wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. These analyses showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model that accurately predicts production of this secondary metabolite across many simulated environmental conditions.


Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway.

  • Lian Yi‎ et al.
  • Analytical chemistry‎
  • 2018‎

Large-scale phosphoproteomics with coverage of over 10,000 sites of phosphorylation have now been routinely achieved with advanced mass spectrometry (MS)-based workflows. However, accurate targeted MS-based quantification of phosphorylation dynamics, an important direction for gaining quantitative understanding of signaling pathways or networks, has been much less investigated. Herein, we report an assessment of the targeted workflow in the context of signal transduction pathways, using the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway as our model. A total of 43 phosphopeptides from the EGFR-MAPK pathway were selected for the study. The recovery and sensitivity of two commonly used enrichment methods, immobilized metal affinity chromatography (IMAC) and titanium oxide (TiO2), combined with selected reaction monitoring (SRM)-MS were evaluated. The recovery of phosphopeptides by IMAC and TiO2 enrichment was quantified to be 38 ± 5% and 58 ± 20%, respectively, based on internal standards. Moreover, both enrichment methods provided comparable sensitivity from 1 to 100 μg starting peptides. Robust quantification was consistently achieved for most targeted phosphopeptides when starting with 25-100 μg peptides. However, the numbers of quantified targets significantly dropped when peptide samples were in the 1-25 μg range. Finally, IMAC-SRM was applied to quantify signaling dynamics of EGFR-MAPK pathway in Hs578T cells following 10 ng/mL EGF treatment. The kinetics of phosphorylation clearly revealed early and late phases of phosphorylation, even for very low abundance proteins. These results demonstrate the feasibility of robust targeted quantification of phosphorylation dynamics for specific pathways, even starting with relatively small amounts of protein.


HER/ErbB receptor interactions and signaling patterns in human mammary epithelial cells.

  • Yi Zhang‎ et al.
  • BMC cell biology‎
  • 2009‎

Knowledge about signaling pathways is typically compiled based on data gathered using different cell lines. This approach implicitly assumes that the cell line dependence is not important. However, different cell lines do not always respond to a particular stimulus in the same way, and lack of coherent data collected from closely related cellular systems can be detrimental to the efforts to understand the regulation of biological processes. To address this issue, we created a clone library of human mammary epithelial (HME) cells that expresses different levels of HER2 and HER3 receptors in combination with endogenous EGFR/HER1. Using our clone library, we have quantified the receptor activation patterns and systematically tested the validity of the existing hypotheses about the interaction patterns between HER1-3 receptors.


Cell surface receptors for signal transduction and ligand transport: a design principles study.

  • Harish Shankaran‎ et al.
  • PLoS computational biology‎
  • 2007‎

Receptors constitute the interface of cells to their external environment. These molecules bind specific ligands involved in multiple processes, such as signal transduction and nutrient transport. Although a variety of cell surface receptors undergo endocytosis, the systems-level design principles that govern the evolution of receptor trafficking dynamics are far from fully understood. We have constructed a generalized mathematical model of receptor-ligand binding and internalization to understand how receptor internalization dynamics encodes receptor function and regulation. A given signaling or transport receptor system represents a particular implementation of this module with a specific set of kinetic parameters. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptor systems can be characterized as being: i) avidity-controlled where the response control depends primarily on the extracellular ligand capture efficiency, ii) consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii) dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled, and the epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to enhance the accuracy of signaling receptors rather than merely serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulation.


Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling.

  • Paweł P Łabaj‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2011‎

Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not. With the compilation of large-scale RNA-Seq datasets with technical replicate samples, however, we can now, for the first time, perform a systematic analysis of the precision of expression level estimates from massively parallel sequencing technology. This then allows considerations for its improvement by computational or experimental means.


Blazing Signature Filter: a library for fast pairwise similarity comparisons.

  • Joon-Yong Lee‎ et al.
  • BMC bioinformatics‎
  • 2018‎

Identifying similarities between datasets is a fundamental task in data mining and has become an integral part of modern scientific investigation. Whether the task is to identify co-expressed genes in large-scale expression surveys or to predict combinations of gene knockouts which would elicit a similar phenotype, the underlying computational task is often a multi-dimensional similarity test. As datasets continue to grow, improvements to the efficiency, sensitivity or specificity of such computation will have broad impacts as it allows scientists to more completely explore the wealth of scientific data.


Receptor-Driven ERK Pulses Reconfigure MAPK Signaling and Enable Persistence of Drug-Adapted BRAF-Mutant Melanoma Cells.

  • Luca Gerosa‎ et al.
  • Cell systems‎
  • 2020‎

Targeted inhibition of oncogenic pathways can be highly effective in halting the rapid growth of tumors but often leads to the emergence of slowly dividing persister cells, which constitute a reservoir for the selection of drug-resistant clones. In BRAFV600E melanomas, RAF and MEK inhibitors efficiently block oncogenic signaling, but persister cells emerge. Here, we show that persister cells escape drug-induced cell-cycle arrest via brief, sporadic ERK pulses generated by transmembrane receptors and growth factors operating in an autocrine/paracrine manner. Quantitative proteomics and computational modeling show that ERK pulsing is enabled by rewiring of mitogen-activated protein kinase (MAPK) signaling: from an oncogenic BRAFV600E monomer-driven configuration that is drug sensitive to a receptor-driven configuration that involves Ras-GTP and RAF dimers and is highly resistant to RAF and MEK inhibitors. Altogether, this work shows that pulsatile MAPK activation by factors in the microenvironment generates a persistent population of melanoma cells that rewires MAPK signaling to sustain non-genetic drug resistance.


Surfactant-assisted one-pot sample preparation for label-free single-cell proteomics.

  • Chia-Feng Tsai‎ et al.
  • Communications biology‎
  • 2021‎

Large numbers of cells are generally required for quantitative global proteome profiling due to surface adsorption losses associated with sample processing. Such bulk measurement obscures important cell-to-cell variability (cell heterogeneity) and makes proteomic profiling impossible for rare cell populations (e.g., circulating tumor cells (CTCs)). Here we report a surfactant-assisted one-pot sample preparation coupled with mass spectrometry (MS) method termed SOP-MS for label-free global single-cell proteomics. SOP-MS capitalizes on the combination of a MS-compatible nonionic surfactant, n-Dodecyl-β-D-maltoside, and hydrophobic surface-based low-bind tubes or multi-well plates for 'all-in-one' one-pot sample preparation. This 'all-in-one' method including elimination of all sample transfer steps maximally reduces surface adsorption losses for effective processing of single cells, thus improving detection sensitivity for single-cell proteomics. This method allows convenient label-free quantification of hundreds of proteins from single human cells and ~1200 proteins from small tissue sections (close to ~20 cells). When applied to a patient CTC-derived xenograft (PCDX) model at the single-cell resolution, SOP-MS can reveal distinct protein signatures between primary tumor cells and early metastatic lung cells, which are related to the selection pressure of anti-tumor immunity during breast cancer metastasis. The approach paves the way for routine, precise, quantitative single-cell proteomics.


Facile carrier-assisted targeted mass spectrometric approach for proteomic analysis of low numbers of mammalian cells.

  • Tujin Shi‎ et al.
  • Communications biology‎
  • 2018‎

There is an unmet technical challenge for mass spectrometry (MS)-based proteomic analysis of single mammalian cells. Quantitative proteomic analysis of single cells has been previously achieved by antibody-based immunoassays but is limited by the availability of high-quality antibodies. Herein we report a facile targeted MS-based proteomics method, termed cPRISM-SRM (carrier-assisted high-pressure, high-resolution separations with intelligent selection and multiplexing coupled to selected reaction monitoring), for reliable analysis of low numbers of mammalian cells. The method capitalizes on using "carrier protein" to assist processing of low numbers of cells with minimal loss, high-resolution PRISM separation for target peptide enrichment, and sensitive SRM for protein quantification. We have demonstrated that cPRISM-SRM has sufficient sensitivity to quantify proteins expressed at ≥200,000 copies per cell at the single-cell level and ≥3000 copies per cell in 100 mammalian cells. We envision that with further improvement cPRISM-SRM has the potential to move toward targeted MS-based single-cell proteomics.


Improving RNA-Seq Precision with MapAl.

  • Paweł P Labaj‎ et al.
  • Frontiers in genetics‎
  • 2012‎

With currently available RNA-Seq pipelines, expression estimates for most genes are very noisy. We here introduce MapAl, a tool for RNA-Seq expression profiling that builds on the established programs Bowtie and Cufflinks. In the post-processing of RNA-Seq reads, it incorporates gene models already at the stage of read alignment, increasing the number of reliably measured known transcripts consistently by 50%. Adding genes identified de novo then allows a reliable assessment of double the total number of transcripts compared to other available pipelines. This substantial improvement is of general relevance: Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not.


Transcriptomic and proteomic signatures of stemness and differentiation in the colon crypt.

  • Amber N Habowski‎ et al.
  • Communications biology‎
  • 2020‎

Intestinal stem cells are non-quiescent, dividing epithelial cells that rapidly differentiate into progenitor cells of the absorptive and secretory cell lineages. The kinetics of this process is rapid such that the epithelium is replaced weekly. To determine how the transcriptome and proteome keep pace with rapid differentiation, we developed a new cell sorting method to purify mouse colon epithelial cells. Here we show that alternative mRNA splicing and polyadenylation dominate changes in the transcriptome as stem cells differentiate into progenitors. In contrast, as progenitors differentiate into mature cell types, changes in mRNA levels dominate the transcriptome. RNA processing targets regulators of cell cycle, RNA, cell adhesion, SUMOylation, and Wnt and Notch signaling. Additionally, global proteome profiling detected >2,800 proteins and revealed RNA:protein patterns of abundance and correlation. Paired together, these data highlight new potentials for autocrine and feedback regulation and provide new insights into cell state transitions in the crypt.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: