Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation.

  • M Tanaka‎ et al.
  • British journal of cancer‎
  • 2009‎

The study shows constitutive activation of the Notch pathway in various types of malignancies. However, it remains unclear how the Notch pathway is involved in the pathogenesis of osteosarcoma. We investigated the expression of the Notch pathway molecules in osteosarcoma biopsy specimens and examined the effect of Notch pathway inhibition. Real-time PCR revealed overexpression of Notch2, Jagged1, HEY1, and HEY2. On the other hand, Notch1 and DLL1 were downregulated in biopsy specimens. Notch pathway inhibition using gamma-secretase inhibitor and CBF1 siRNA slowed the growth of osteosarcomas in vitro. In addition, gamma-secretase inhibitor-treated xenograft models exhibited significantly slower osteosarcoma growth. Cell cycle analysis revealed that gamma-secretase inhibitor promoted G1 arrest. Real-time PCR and western blot revealed that gamma-secretase inhibitor reduced the expression of accelerators of the cell cycle, including cyclin D1, cyclin E1, E2, and SKP2. On the other hand, p21(cip1) protein, a cell cycle suppressor, was upregulated by gamma-secretase inhibitor treatment. These findings suggest that inhibition of Notch pathway suppresses osteosarcoma growth by regulation of cell cycle regulator expression and that the inactivation of the Notch pathway may be a useful approach to the treatment of patients with osteosarcoma.


A new subspecies identification and population study of the Asian small-clawed otter (Aonyx cinereus) in Malay Peninsula and southern Thailand based on fecal DNA method.

  • M K A Rosli‎ et al.
  • TheScientificWorldJournal‎
  • 2014‎

Three species of otter can be found throughout Malay Peninsula: Aonyx cinereus, Lutra sumatrana, and Lutrogale perspicillata. In this study, we focused on the A. cinereus population that ranges from the southern and the east coast to the northern regions of Malay Peninsula up to southern Thailand to review the relationships between the populations based on the mitochondrial D-loop region. Forty-eight samples from six populations were recognized as Johor, Perak, Terengganu, Kelantan, Ranong, and Thale Noi. Among the 48 samples, 33 were identified as A. cinereus, seven as L. sumatrana, and eight as L. perspicillata. Phylogenetically, two subclades formed for A. cinereus. The first subclade grouped all Malay Peninsula samples except for samples from Kelantan, and the second subclade grouped Kelantan samples with Thai sample. Genetic distance analysis supported the close relationships between Thai and Kelantan samples compared to the samples from Terengganu and the other Malaysian states. A minimum-spanning network showed that Kelantan and Thailand formed a haplogroup distinct from the other populations. Our results show that Thai subspecies A. cinereus may have migrated to Kelantan from Thai mainland. We also suggest the classification of a new subspecies from Malay Peninsula, the small-clawed otter named A. cinereus kecilensis.


Reversal of freshening trend of Antarctic Bottom Water in the Australian-Antarctic Basin during 2010s.

  • S Aoki‎ et al.
  • Scientific reports‎
  • 2020‎

The Antarctic continental margin supplies the densest bottom water to the global abyss. From the late twentieth century, an acceleration in the long-term freshening of Antarctic Bottom Waters (AABW) has been detected in the Australian-Antarctic Basin. Our latest hydrographic observations reveal that, in the late 2010s, the freshening trend has reversed broadly over the continental slope. Near-bottom salinities in 2018-2019 were higher than during 2011-2015. Along 170° E, the salinity increase between 2011 and 2018 was greater than that observed in the west. The layer thickness of the densest AABW increased during the 2010s, suggesting that the Ross Sea Bottom Water intensification was a major source of the salinity increase. Freshwater content on the continental slope decreased at a rate of 58 ± 37 Gt/a in the near-bottom layer. The decadal change is very likely due to changes in Ross Sea shelf water attributable to a decrease in meltwater from West Antarctic ice shelves for the corresponding period.


Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: Evidence for direct involvement of claudins in tight junction barrier.

  • N Sonoda‎ et al.
  • The Journal of cell biology‎
  • 1999‎

Claudins, comprising a multigene family, constitute tight junction (TJ) strands. Clostridium perfringens enterotoxin (CPE), a single approximately 35-kD polypeptide, was reported to specifically bind to claudin-3/RVP1 and claudin-4/CPE-R at its COOH-terminal half. We examined the effects of the COOH-terminal half fragment of CPE (C-CPE) on TJs in L transfectants expressing claudin-1 to -4 (C1L to C4L, respectively), and in MDCK I cells expressing claudin-1 and -4. C-CPE bound to claudin-3 and -4 with high affinity, but not to claudin-1 or -2. In the presence of C-CPE, reconstituted TJ strands in C3L cells gradually disintegrated and disappeared from their cell surface. In MDCK I cells incubated with C-CPE, claudin-4 was selectively removed from TJs with its concomitant degradation. At 4 h after incubation with C-CPE, TJ strands were disintegrated, and the number of TJ strands and the complexity of their network were markedly decreased. In good agreement with the time course of these morphological changes, the TJ barrier (TER and paracellular flux) of MDCK I cells was downregulated by C-CPE in a dose-dependent manner. These findings provided evidence for the direct involvement of claudins in the barrier functions of TJs.


Dynamic features of adherens junctions during Drosophila embryonic epithelial morphogenesis revealed by a Dalpha-catenin-GFP fusion protein.

  • H Oda‎ et al.
  • Development genes and evolution‎
  • 1999‎

Cell-cell adherens junctions (AJs), comprised of the cadherin-catenin adhesion system, contribute to cell shape changes and cell movements in epithelial morphogenesis. However, little is known about the dynamic features of AJs in cells of the developing embryo. In this study, we constructed Dalpha-catenin fused with a green fluorescent protein (Dalpha-catenin-GFP), and found that it targeted apically located AJ-based contacts but not other lateral contacts in epithelial cells of living Drosophila embryos. Using time-lapse fluorescence microscopy, we examined the dynamic performance of AJs containing Dalpha-catenin-GFP in epithelial morphogenetic movements. In the ventral ectoderm of stage 11 embryos, concentration and deconcentration of Dalpha-catenin-GFP occurred concomitantly with changes in length of AJ contacts. In the lateral ectoderm of embryos at the same stage, dynamic behaviour of AJs was concerted with division and delamination of sensory organ precursor (SOP) cells. Moreover, changes in patterns of AJ networks during tracheal extension could be followed. Finally, we utilized Dalpha-catenin-GFP to precisely observe the defects in tracheal fusion in shotgun mutants. Thus, the Dalpha-catenin-GFP fusion protein is a helpful tool to simultaneously observe morphogenetic movements and AJ dynamics at high spatio-temporal resolution.


Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association.

  • T Matsui‎ et al.
  • The Journal of cell biology‎
  • 1998‎

The ezrin/radixin/moesin (ERM) proteins are involved in actin filament/plasma membrane interaction that is regulated by Rho. We examined whether ERM proteins are directly phosphorylated by Rho-associated kinase (Rho-kinase), a direct target of Rho. Recombinant full-length and COOH-terminal half radixin were incubated with constitutively active catalytic domain of Rho-kinase, and approximately 30 and approximately 100% of these molecules, respectively, were phosphorylated mainly at the COOH-terminal threonine (T564). Next, to detect Rho-kinase-dependent phosphorylation of ERM proteins in vivo, we raised a mAb that recognized the T564-phosphorylated radixin as well as ezrin and moesin phosphorylated at the corresponding threonine residue (T567 and T558, respectively). Immunoblotting of serum-starved Swiss 3T3 cells with this mAb revealed that after LPA stimulation ERM proteins were rapidly phosphorylated at T567 (ezrin), T564 (radixin), and T558 (moesin) in a Rho-dependent manner and then dephosphorylated within 2 min. Furthermore, the T564 phosphorylation of recombinant COOH-terminal half radixin did not affect its ability to bind to actin filaments in vitro but significantly suppressed its direct interaction with the NH2-terminal half of radixin. These observations indicate that the Rho-kinase-dependent phosphorylation interferes with the intramolecular and/ or intermolecular head-to-tail association of ERM proteins, which is an important mechanism of regulation of their activity as actin filament/plasma membrane cross-linkers.


Oxidants affect permeability and repair of the cultured human tracheal epithelium.

  • M Yamaya‎ et al.
  • The American journal of physiology‎
  • 1995‎

To examine the effects of oxidants on the airway epithelial barrier functions, human tracheal epithelial cells were cultured on porous filter membrane. Glucose oxidase (GO; 10 U/ml), hydrogen peroxide (H2O2; 4 x 10(-3) M), and xanthine (5 x 10(-4) M) plus xanthine oxidase (20 mU/ml) (X-XO) significantly increased electrical conductance across epithelial membrane (G), short-circuit current (Isc) measured with Ussing's chamber methods, and [3H]mannitol flux through the cultured epithelium. Increases in G and Isc induced by oxidants were significantly inhibited by catalase (1,000 U/ml) and the protein kinase C inhibitor staurosporine (10(-7) M), but superoxide dismutase (SOD; 100 U/ml) was without effect. GO, H2O2, and X-XO inhibited the epithelial cell growth, [3H]thymidine incorporation by the cells, and epithelial repair of artificially produced focal epithelial defects (1-2 mm diam) on plastic vessels. Catalase also inhibited effects induced by oxidants on cell growth and proliferation. These results suggest that oxidants reduce tracheal epithelial barrier functions by damaging tight junctions and inhibiting cell proliferation, and these effects of oxidants on epithelial cells may be mediated by H2O2 rather than superoxide anion and by activation of protein kinase C.


Absence of age-related prefrontal NAA change in adults with autism spectrum disorders.

  • Y Aoki‎ et al.
  • Translational psychiatry‎
  • 2012‎

Atypical trajectory of brain growth in autism spectrum disorders (ASDs) has been recognized as a potential etiology of an atypical course of behavioral development. Numerous neuroimaging studies have focused on childhood to investigate atypical age-related change of brain structure and function, because it is a period of neuron and synapse maturation. Recent studies, however, have shown that the atypical age-related structural change of autistic brain expands beyond childhood and constitutes neural underpinnings for lifelong difficulty to behavioral adaptation. Thus, we examined effects of aging on neurochemical aspects of brain maturation using 3-T proton magnetic resonance spectroscopy ((1)H-MRS) with single voxel in the medial prefrontal cortex (PFC) in 24 adult men with non-medicated high-functioning ASDs and 25 age-, IQ- and parental-socioeconomic-background-matched men with typical development (TD). Multivariate analyses of covariance demonstrated significantly high N-acetylaspartate (NAA) level in the ASD subjects compared with the TD subjects (F=4.83, P=0.033). The low NAA level showed a significant positive correlation with advanced age in the TD group (r=-0.618, P=0.001), but was not evident among the ASD individuals (r=0.258, P=0.223). Fisher's r-to-z transformation showed a significant difference in the correlations between the ASD and TD groups (Z=-3.23, P=0.001), which indicated that the age-NAA relationship was significantly specific to people with TD. The current (1)H-MRS study provided new evidence that atypical age-related change of neurochemical aspects of brain maturation in ASD individuals expands beyond childhood and persists during adulthood.


Manner of interaction of heterogeneous claudin species within and between tight junction strands.

  • M Furuse‎ et al.
  • The Journal of cell biology‎
  • 1999‎

In tight junctions (TJs), TJ strands are associated laterally with those of adjacent cells to form paired strands to eliminate the extracellular space. Claudin-1 and -2, integral membrane proteins of TJs, reconstitute paired TJ strands when transfected into L fibroblasts. Claudins comprise a multigene family and more than two distinct claudins are coexpressed in single cells, raising the questions of whether heterogeneous claudins form heteromeric TJ strands and whether claudins interact between each of the paired strands in a heterophilic manner. To answer these questions, we cotransfected two of claudin-1, -2, and -3 into L cells, and detected their coconcentration at cell-cell borders as elaborate networks. Immunoreplica EM confirmed that distinct claudins were coincorporated into individual TJ strands. Next, two L transfectants singly expressing claudin-1, -2, or -3 were cocultured and we found that claudin-3 strands laterally associated with claudin-1 and -2 strands to form paired strands, whereas claudin-1 strands did not interact with claudin-2 strands. We concluded that distinct species of claudins can interact within and between TJ strands, except in some combinations. This mode of assembly of claudins could increase the diversity of the structure and functions of TJ strands.


Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins.

  • K Tachibana‎ et al.
  • The Journal of cell biology‎
  • 2000‎

We have found a new cell-cell adhesion system at cadherin-based cell-cell adherens junctions (AJs) consisting of at least nectin and l-afadin. Nectin is a Ca(2+)-independent homophilic immunoglobulin-like adhesion molecule, and l-afadin is an actin filament-binding protein that connects the cytoplasmic region of nectin to the actin cytoskeleton. Both the trans-interaction of nectin and the interaction of nectin with l-afadin are necessary for their colocalization with E-cadherin and catenins at AJs. Here, we examined the mechanism of interaction between these two cell-cell adhesion systems at AJs by the use of alpha-catenin-deficient F9 cell lines and cadherin-deficient L cell lines stably expressing their various components. We showed here that nectin and E-cadherin were colocalized through l-afadin and the COOH-terminal half of alpha-catenin at AJs. Nectin trans-interacted independently of E-cadherin, and the complex of E-cadherin and alpha- and beta-catenins was recruited to nectin-based cell-cell adhesion sites through l-afadin without the trans-interaction of E-cadherin. Our results indicate that nectin and cadherin interact through their cytoplasmic domain-associated proteins and suggest that these two cell-cell adhesion systems cooperatively organize cell-cell AJs.


Identification of essential sequence motifs in the node/notochord enhancer of Foxa2 (Hnf3beta) gene that are conserved across vertebrate species.

  • Y Nishizaki‎ et al.
  • Mechanisms of development‎
  • 2001‎

The expression of a winged-helix transcription factor, Foxa2/HNF3beta, is essential for development of the node and the notochord. We examined the node/notochord enhancer of mouse Foxa2 for sequence motifs conserved across vertebrate species. We cloned Foxa2 genes from chicken and fish, and identified the respective node/notochord enhancers that were active in transgenic mouse embryos. Comparison of the sequences of the enhancers revealed three evolutionally conserved sequence motifs, CS1, CS2 and CS3. Mutational analysis of the mouse enhancer indicated that CS3 is indispensable for gene expression in the node and the notochord, while CS1 and CS2 are required to augment enhancer activity. These motifs do not correspond to the consensus binding sequences of transcription factors known to be involved in node/notochord development.


Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells.

  • M Furuse‎ et al.
  • The Journal of cell biology‎
  • 2001‎

There are two strains of MDCK cells, MDCK I and II. MDCK I cells show much higher transepithelial electric resistance (TER) than MDCK II cells, although they bear similar numbers of tight junction (TJ) strands. We examined the expression pattern of claudins, the major components of TJ strands, in these cells: claudin-1 and -4 were expressed both in MDCK I and II cells, whereas the expression of claudin-2 was restricted to MDCK II cells. The dog claudin-2 cDNA was then introduced into MDCK I cells to mimic the claudin expression pattern of MDCK II cells. Interestingly, the TER values of MDCK I clones stably expressing claudin-2 (dCL2-MDCK I) fell to the levels of MDCK II cells (>20-fold decrease). In contrast, when dog claudin-3 was introduced into MDCK I cells, no change was detected in their TER. Similar results were obtained in mouse epithelial cells, Eph4. Morphometric analyses identified no significant differences in the density of TJs or in the number of TJ strands between dCL2-MDCK I and control MDCK I cells. These findings indicated that the addition of claudin-2 markedly decreased the tightness of individual claudin-1/4-based TJ strands, leading to the speculation that the combination and mixing ratios of claudin species determine the barrier properties of individual TJ strands.


Afadin: A novel actin filament-binding protein with one PDZ domain localized at cadherin-based cell-to-cell adherens junction.

  • K Mandai‎ et al.
  • The Journal of cell biology‎
  • 1997‎

A novel actin filament (F-actin)-binding protein with a molecular mass of approximately 205 kD (p205), which was concentrated at cadherin-based cell-to-cell adherens junction (AJ), was isolated and characterized. p205 was purified from rat brain and its cDNA was cloned from a rat brain cDNA library. p205 was a protein of 1,829 amino acids (aa) with a calculated molecular mass of 207,667 kD. p205 had one F-actin-binding domain at 1,631-1,829 aa residues and one PDZ domain at 1,016- 1,100 aa residues, a domain known to interact with transmembrane proteins. p205 was copurified from rat brain with another protein with a molecular mass of 190 kD (p190). p190 was a protein of 1,663 aa with a calculated molecular mass of 188,971 kD. p190 was a splicing variant of p205 having one PDZ domain at 1,009-1,093 aa residues but lacking the F-actin-binding domain. Homology search analysis revealed that the aa sequence of p190 showed 90% identity over the entire sequence with the product of the AF-6 gene, which was found to be fused to the ALL-1 gene, known to be involved in acute leukemia. p190 is likely to be a rat counterpart of human AF-6 protein. p205 bound along the sides of F-actin but hardly showed the F-actin-cross-linking activity. Northern and Western blot analyses showed that p205 was ubiquitously expressed in all the rat tissues examined, whereas p190 was specifically expressed in brain. Immunofluorescence and immunoelectron microscopic studies revealed that p205 was concentrated at cadherin-based cell-to-cell AJ of various tissues. We named p205 l-afadin (a large splicing variant of AF-6 protein localized at adherens junction) and p190 s-afadin (a small splicing variant of l-afadin). These results suggest that l-afadin serves as a linker of the actin cytoskeleton to the plasma membrane at cell-to-cell AJ.


ERM (ezrin/radixin/moesin)-based molecular mechanism of microvillar breakdown at an early stage of apoptosis.

  • T Kondo‎ et al.
  • The Journal of cell biology‎
  • 1997‎

Breakdown of microvilli is a common early event in various types of apoptosis, but its molecular mechanism and implications remain unclear. ERM (ezrin/radixin/moesin) proteins are ubiquitously expressed microvillar proteins that are activated in the cytoplasm, translocate to the plasma membrane, and function as general actin filament/plasma membrane cross-linkers to form microvilli. Immunofluorescence microscopic and biochemical analyses revealed that, at the early phase of Fas ligand (FasL)-induced apoptosis in L cells expressing Fas (LHF), ERM proteins translocate from the plasma membranes of microvilli to the cytoplasm concomitant with dephosphorylation. When the FasL-induced dephosphorylation of ERM proteins was suppressed by calyculin A, a serine/threonine protein phosphatase inhibitor, the cytoplasmic translocation of ERM proteins was blocked. The interleukin-1beta-converting enzyme (ICE) protease inhibitors suppressed the dephosphorylation as well as the cytoplasmic translocation of ERM proteins. These findings indicate that during FasL-induced apoptosis, the ICE protease cascade was first activated, and then ERM proteins were dephosphorylated followed by their cytoplasmic translocation, i.e., microvillar breakdown. Next, to examine the subsequent events in microvillar breakdown, we prepared DiO-labeled single-layered plasma membranes with the cytoplasmic surface freely exposed from FasL-treated or nontreated LHF cells. On single-layered plasma membranes from nontreated cells, ERM proteins and actin filaments were densely detected, whereas those from FasL-treated cells were free from ERM proteins or actin filaments. We thus concluded that the cytoplasmic translocation of ERM proteins is responsible for the microvillar breakdown at an early phase of apoptosis and that the depletion of ERM proteins from plasma membranes results in the gross dissociation of actin-based cytoskeleton from plasma membranes. The physiological relevance of this ERM protein-based microvillar breakdown in apoptosis will be discussed.


Possible involvement of phosphorylation of occludin in tight junction formation.

  • A Sakakibara‎ et al.
  • The Journal of cell biology‎
  • 1997‎

Occludin is an integral membrane protein localizing at tight junctions in epithelial and endothelial cells. Occludin from confluent culture MDCK I cells resolved as several (>10) bands between 62 and 82 kD in SDS-PAGE, of which two or three bands of the lowest Mr were predominant. Among these bands, the lower predominant bands were essentially extracted with 1% NP-40, whereas the other higher Mr bands were selectively recovered in the NP-40-insoluble fraction. Alkaline phosphatase treatment converged these bands of occludin both in NP-40-soluble and -insoluble fractions into the lowest Mr band, and phosphoamino acid analyses identified phosphoserine (and phosphothreonine weakly) in the higher Mr bands of occludin. These findings indicated that phosphorylation causes an upward shift of occludin bands and that highly phosphorylated occludin resists NP-40 extraction. When cells were grown in low Ca medium, almost all occludin was NP-40 soluble. Switching from low to normal Ca medium increased the amount of NP-40-insoluble occludin within 10 min, followed by gradual upward shift of bands. This insolubilization and the band shift correlated temporally with tight junction formation detected by immunofluorescence microscopy. Furthermore, we found that the anti-chicken occludin mAb, Oc-3, did not recognize the predominant lower Mr bands of occludin (non- or less phosphorylated form) but was specific to the higher Mr bands (phosphorylated form) on immunoblotting. Immunofluorescence microscopy revealed that this mAb mainly stained the tight junction proper of intestinal epithelial cells, whereas other anti-occludin mAbs, which can recognize the predominant lower Mr bands, labeled their basolateral membranes (and the cytoplasm) as well as tight junctions. Therefore, we conclude that non- or less phosphorylated occludin is distributed on the basolateral membranes and that highly phosphorylated occludin is selectively concentrated at tight juctions as the NP-40-insoluble form. These findings suggest that the phosphorylation of occludin is a key step in tight junction assembly.


Gliclazide directly suppresses arginine-induced glucagon secretion.

  • K Takahashi‎ et al.
  • Diabetes research and clinical practice‎
  • 1994‎

To clarify whether the effect of sulfonylurea on glucagon secretion is directly on the pancreatic A cell, we examined changes produced by gliclazide in glucagon (IRG), insulin (IRI) and somatostatin (IRS) release from the isolated perfused rat pancreas. Under 5 mM glucose infusion, IRI and IRS were increased by gliclazide in a dose-dependent manner, but IRG was unchanged. When 20 mM arginine was infused to stimulate glucagon secretion, both IRI and IRG increased markedly in a biphasic fashion and IRS increased slightly. The administration of gliclazide at the time of second phase response of IRG, IRI and IRS increased further and IRG decreased at every dose used. Insulin administration to the control and streptozotocin-treated rat pancreas did not change arginine-induced IRG secretion. Gliclazide-induced glucagon suppression was also observed in streptozotocin-diabetic rat pancreas. The amount of administered somatostatin required for inhibiting glucagon secretion was higher than the maximal level obtained from endogenous secretion of somatostatin after gliclazide. Neither cysteamine treatment alone (somatostatin-depleted) nor combined with streptozotocin-treatment (combined depletion of somatostatin and insulin) changed gliclazide-induced glucagon suppression. Thus, it is concluded that suppression of glucagon is induced by sulfonylurea itself.


Identification of a Drosophila homologue of alpha-catenin and its association with the armadillo protein.

  • H Oda‎ et al.
  • The Journal of cell biology‎
  • 1993‎

The cadherin cell adhesion system plays a central role in cell-cell adhesion in vertebrates, but its homologues are not identified in the invertebrate. alpha-Catenins are a group of proteins associated with cadherins, and this association is crucial for the cadherins' function. Here, we report the cloning of a Drosophila alpha-catenin gene by low stringent hybridization with a mouse alpha E-catenin probe. Isolated cDNAs encoded a 110-kD protein with 60% identity to mouse alpha E-catenin, and this protein was termed D alpha-catenin. The gene of this protein was located at the chromosome band 80B. Immunostaining analysis using a mAb to D alpha-catenin revealed that it was localized to cell-cell contact sites, expressed throughout development and present in a wide variety of tissues. When this protein was immunoprecipitated from detergent extracts of Drosophila embryos or cell lines, several proteins co-precipitated. These included the armadillo product which was known to be a Drosophila homologue of beta-catenin, another cadherin-associated protein in vertebrates, and a 150-kD glycoprotein. These results strongly suggest that Drosophila has a cell adhesion machinery homologous to the vertebrate cadherin-catenin system.


Nonchordate classic cadherins have a structurally and functionally unique domain that is absent from chordate classic cadherins.

  • H Oda‎ et al.
  • Developmental biology‎
  • 1999‎

Classic cadherins, which are adhesion molecules in cell-cell adherens junctions, have a large contribution to the construction of the animal body. Their molecular structures show clear differences between chordate and nonchordate metazoans. Although nonchordate classic cadherins have cadherin superfamily-specific extracellular repeats (CRs) and a highly conserved cytoplasmic domain (CP), these cadherins have a unique extracellular domain that is absent from vertebrate and ascidian classic cadherins. We called this the primitive classic cadherin domain (PCCD). To understand the roles of the PCCD, we constructed and characterized a series of mutant forms of the Drosophila classic cadherin DE-cadherin. Biochemical analyses indicated that the last two CRs and PCCD form a special structure with proteolytic cleavage. Mutations in the PCCD did not eliminate the cell-cell-binding function of DE-cadherin in cultured cells, but prevented the cadherin from efficiently translocating to the plasma membrane in epithelial cells of the developing embryo. In addition, genetic rescue assays suggested that although CP-mediated control plays a central role in tracheal fusion, the role of the PCCD in efficient recruitment of DE-cadherin to apical areas of the plasma membranes is also important for dynamic epithelial morphogenesis. We propose that there is a fundamental difference in the mode of classic cadherin-mediated cell-cell adhesion between chordate and nonchordate metazoans.


Functional neuroimaging of cognition impaired by a classical antihistamine, d-chlorpheniramine.

  • N Okamura‎ et al.
  • British journal of pharmacology‎
  • 2000‎

Antihistamine induced cognitive decline was evaluated using positron emission tomography (PET) measurement of histamine H1 receptor (H1R) occupancy and regional cerebral blood flow (rCBF). Cognitive performance in attention-demanding task deteriorated dose-dependently and the effects were statistically significant after the treatment of 2 mg of d-chlorpheniramine. There was no significant change in subjective sleepiness in the same dose. The regional blockade of H1R was observed mainly in the frontal, temporal and anterior cingulate cortices, and the intravenous administration of d-chlorpheniramine as a therapeutic dose (2 mg) blocked over 60% of H1R in the frontal cortices. The results from activation study using visual discrimination tasks demonstrated that enhanced activity in the right prefrontal and anterior cingulate cortices as well as a decreased activity in the left temporal and frontal cortices and midbrain after the treatment of d-chlorpheniramine. There were no changes in global CBF for the subjects treated with 2 mg d-chlorpheniramine (pre; 44.8+/-3.3 ml dl(-1) min(-1) vs post; 44.4+/-4.7 ml dl(-1) min(-1)). The results indicated that the attention system of human brain could be altered by therapeutic doses of H1R antagonists. These findings provide the information as to the potential risk of antihistamines in our daily activities. British Journal of Pharmacology (2000) 129, 115 - 123


Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions.

  • M Itoh‎ et al.
  • The Journal of cell biology‎
  • 2001‎

At tight junctions (TJs), claudins with four transmembrane domains are incorporated into TJ strands. Junctional adhesion molecule (JAM), which belongs to the immunoglobulin superfamily, is also localized at TJs, but it remains unclear how JAM is integrated into TJs. Immunoreplica electron microscopy revealed that JAM showed an intimate spatial relationship with TJ strands in epithelial cells. In L fibroblasts expressing exogenous JAM, JAM was concentrated at cell-cell adhesion sites, where there were no strand-like structures, but rather characteristic membrane domains free of intramembranous particles were detected. These domains were specifically labeled with anti-JAM polyclonal antibody, suggesting that JAM forms planar aggregates through their lateral self-association. Immunofluorescence microscopy and in vitro binding assays revealed that ZO-1 directly binds to the COOH termini of claudins and JAM at its PDZ1 and PDZ3 domains, respectively. Furthermore, another PDZ-containing polarity-related protein, PAR-3, was directly bound to the COOH terminus of JAM, but not to that of claudins. These findings led to a molecular architectural model for TJs: small aggregates of JAM are tethered to claudin-based strands through ZO-1, and these JAM aggregates recruit PAR-3 to TJs. We also discuss the importance of this model from the perspective of the general molecular mechanisms behind the recruitment of PAR proteins to plasma membranes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: