2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 43 papers

Low dose zymosan ameliorates both chronic and relapsing experimental autoimmune encephalomyelitis.

  • Hongmei Li‎ et al.
  • Journal of neuroimmunology‎
  • 2013‎

Zymosan has previously been reported to have both pro-inflammatory and anti-inflammatory effects. Here we demonstrate that low dose zymosan prevented or reversed chronic and relapsing paralysis in EAE. In suppressing CNS autoimmune inflammation, zymosan not only regulated APC costimulator and MHC class II expression, but also promoted differentiation of regulatory T cells. Following adoptive transfer of zymosan-primed CD4(+) T cells, recipient mice were protected from EAE. In contrast, a MAPK inhibitor and a blocker of β-glucan, reversed the effects of zymosan. These results demonstrate that zymosan may be a promising beneficial agent for Multiple Sclerosis (MS).


LIM protein JUB promotes epithelial-mesenchymal transition in colorectal cancer.

  • Xing-Hua Liang‎ et al.
  • Cancer science‎
  • 2014‎

Metastasis is the leading cause of cancer-related death in almost all types of cancers, including colorectal cancer (CRC). Metastasis is a complex, multistep, dynamic biological event, and epithelial-mesenchymal transition (EMT) is a critical process during the cascade. Ajuba family proteins are LIM domain-containing proteins and are reported to be transcription repressors regulating different kinds of physiological processes. However, the expression and pathological roles of Ajuba family proteins in tumors, especial in tumor metastasis, remain poorly studied. Here, we found that JUB, but not the other Ajuba family proteins, was highly upregulated in clinical specimens and CRC cell lines. Ectopic expression of JUB induced EMT and enhanced motility and invasiveness in CRC, and vice versa. Mechanistic study revealed that JUB induces EMT via Snail and JUB is also required for Snail-induced EMT. The expression of JUB shows an inverse correlation with E-cadherin expression in clinical specimens. Taken together, these findings revealed that the LIM protein JUB serves as a tumor-promoting gene in CRC by promoting EMT, a critical process of metastasis. Thus, the LIM protein JUB may provide a novel target for therapy of metastatic CRC.


Induction of Peripheral Tolerance in Ongoing Autoimmune Inflammation Requires Interleukin 27 Signaling in Dendritic Cells.

  • Rodolfo Thomé‎ et al.
  • Frontiers in immunology‎
  • 2017‎

Peripheral tolerance to autoantigens is induced via suppression of self-reactive lymphocytes, stimulation of tolerogenic dendritic cells (DCs) and regulatory T (Treg) cells. Interleukin (IL)-27 induces tolerogenic DCs and Treg cells; however, it is not known whether IL-27 is important for tolerance induction. We immunized wild-type (WT) and IL-27 receptor (WSX-1) knockout mice with MOG35-55 for induction of experimental autoimmune encephalomyelitis and intravenously (i.v.) injected them with MOG35-55 after onset of disease to induce i.v. tolerance. i.v. administration of MOG35-55 reduced disease severity in WT mice, but was ineffective in Wsx-/- mice. IL-27 signaling in DCs was important for tolerance induction, whereas its signaling in T cells was not. Further mechanistic studies showed that IL-27-dependent tolerance relied on cooperation of distinct subsets of spleen DCs with the ability to induce T cell-derived IL-10 and IFN-γ. Overall, our data show that IL-27 is a key cytokine in antigen-induced peripheral tolerance and may provide basis for improvement of antigen-specific tolerance approaches in multiple sclerosis and other autoimmune diseases.


FSD-C10, a Fasudil derivative, promotes neuroregeneration through indirect and direct mechanisms.

  • Yan-Hua Li‎ et al.
  • Scientific reports‎
  • 2017‎

FSD-C10, a Fasudil derivative, was shown to reduce severity of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), through the modulation of the immune response and induction of neuroprotective molecules in the central nervous system (CNS). However, whether FSD-C10 can promote neuroregeneration remains unknown. In this study, we further analyzed the effect of FSD-C10 on neuroprotection and remyelination. FSD-C10-treated mice showed a longer, thicker and more intense MAP2 and synaptophysin positive signal in the CNS, with significantly fewer CD4+ T cells, macrophages and microglia. Importantly, the CNS of FSD-C10-treated mice showed a shift of activated macrophages/microglia from the type 1 to type 2 status, elevated numbers of oligodendrocyte precursor cells (OPCs) and oligodendrocytes, and increased levels of neurotrophic factors NT-3, GDNF and BDNF. FSD-C10-treated microglia significantly inhibited Th1/Th17 cell differentiation and increased the number of IL-10+ CD4+ T cells, and the conditioned medium from FSD-C10-treated microglia promoted OPC survival and oligodendrocyte maturation. Addition of FSD-C10 directly promoted remyelination in a chemical-induced demyelination model on organotypic slice culture, in a BDNF-dependent manner. Together, these findings demonstrate that FSD-C10 promotes neural repair through mechanisms that involved both immunomodulation and induction of neurotrophic factors.


FSD-C10: A more promising novel ROCK inhibitor than Fasudil for treatment of CNS autoimmunity.

  • Yan-Le Xin‎ et al.
  • Bioscience reports‎
  • 2015‎

Rho-Rho kinase (Rho-ROCK) triggers an intracellular signalling cascade that regulates cell survival, death, adhesion, migration, neurite outgrowth and retraction and influences the generation and development of several neurological disorders. Although Fasudil, a ROCK inhibitor, effectively suppressed encephalomyelitis (EAE), certain side effects may limit its clinical use. A novel and efficient ROCK inhibitor, FSD-C10, has been explored. In the present study, we present chemical synthesis and structure of FSD-C10, as well as the relationship between compound concentration and ROCK inhibition. We compared the inhibitory efficiency of ROCKI and ROCK II, the cell cytotoxicity, neurite outgrowth and dendritic formation, neurotrophic factors and vasodilation between Fasudil and FSD-C10. The results demonstrated that FSD-C10, like Fasudil, induced neurite outgrowth of neurons and dendritic formation of BV-2 microglia and enhanced the production of neurotrophic factor brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3). However, the cell cytotoxicity and vasodilation of FSD-C10 were relatively small compared with Fasudil. Although Fasudil inhibited both ROCK I and ROCK II, FSD-C10 more selectively suppressed ROCK II, but not ROCK I, which may be related to vasodilation insensitivity and animal mortality. Thus, FSD-C10 may be a safer and more promising novel ROCK inhibitor than Fasudil for the treatment of several neurological disorders.


Evaluation of the effect of GM-CSF blocking on the phenotype and function of human monocytes.

  • Noushin Lotfi‎ et al.
  • Scientific reports‎
  • 2020‎

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multipotent cytokine that prompts the proliferation of bone marrow-derived macrophages and granulocytes. In addition to its effects as a growth factor, GM-CSF plays an important role in chronic inflammatory autoimmune diseases such as multiple sclerosis and rheumatoid arthritis. Reports have identified monocytes as the primary target of GM-CSF; however, its effect on monocyte activation has been under-estimated. Here, using flow cytometry and ELISA we show that GM-CSF induces an inflammatory profile in human monocytes, which includes an upregulated expression of HLA-DR and CD86 molecules and increased production of TNF-α and IL-1β. Conversely, blockage of endogenous GM-CSF with antibody treatment not only inhibited the inflammatory profile of these cells, but also induced an immunomodulatory one, as shown by increased IL-10 production by monocytes. Further analysis with qPCR, flow cytometry and ELISA experiments revealed that GM-CSF blockage in monocytes stimulated production of the chemokine CXCL-11, which suppressed T cell proliferation. Blockade of CXCL-11 abrogated anti-GM-CSF treatment and induced inflammatory monocytes. Our findings show that anti-GM-CSF treatment induces modulatory monocytes that act in a CXCL-11-dependent manner, a mechanism that can be used in the development of novel approaches to treat chronic inflammatory autoimmune diseases.


CSF-1 maintains pathogenic but not homeostatic myeloid cells in the central nervous system during autoimmune neuroinflammation.

  • Daniel Hwang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

The receptor for colony stimulating factor 1 (CSF-1R) is important for the survival and function of myeloid cells that mediate pathology during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). CSF-1 and IL-34, the ligands of CSF-1R, have similar bioactivities but distinct tissue and context-dependent expression patterns, suggesting that they have different roles. This could be the case in EAE, given that CSF-1 expression is up-regulated in the CNS, while IL-34 remains constitutively expressed. We found that targeting CSF-1 with neutralizing antibody halted ongoing EAE, with efficacy superior to CSF-1R inhibitor BLZ945, whereas IL-34 neutralization had no effect, suggesting that pathogenic myeloid cells were maintained by CSF-1. Both anti–CSF-1 and BLZ945 treatment greatly reduced the number of monocyte-derived cells and microglia in the CNS. However, anti–CSF-1 selectively depleted inflammatory microglia and monocytes in inflamed CNS areas, whereas BLZ945 depleted virtually all myeloid cells, including quiescent microglia, throughout the CNS. Anti–CSF-1 treatment reduced the size of demyelinated lesions and microglial activation in the gray matter. Lastly, we found that bone marrow–derived immune cells were the major mediators of CSF-1R–dependent pathology, while microglia played a lesser role. Our findings suggest that targeting CSF-1 could be effective in ameliorating MS pathology, while preserving the homeostatic functions of myeloid cells, thereby minimizing risks associated with ablation of CSF-1R–dependent cells.


MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

  • Hui Xu‎ et al.
  • PloS one‎
  • 2010‎

MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.


Combination Therapy With Fingolimod and Neural Stem Cells Promotes Functional Myelination in vivo Through a Non-immunomodulatory Mechanism.

  • Yuan Zhang‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2019‎

Myelination, which occurs predominantly postnatally and continues throughout life, is important for proper neurologic function of the mammalian central nervous system (CNS). We have previously demonstrated that the combination therapy of fingolimod (FTY720) and transplanted neural stem cells (NSCs) had a significantly enhanced therapeutic effect on the chronic stage of experimental autoimmune encephalomyelitis, an animal model of CNS autoimmunity, compared to using either one of them alone. However, reduced disease severity may be secondary to the immunomodulatory effects of FTY720 and NSCs, while whether this therapy directly affects myelinogenesis remains unknown. To investigate this important question, we used three myelination models under minimal or non-inflammatory microenvironments. Our results showed that FTY720 drives NSCs to differentiate into oligodendrocytes and promotes myelination in an ex vivo brain slice culture model, and in the developing CNS of healthy postnatal mice in vivo. Elevated levels of neurotrophic factors, e.g., brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor, were observed in the CNS of the treated infant mice. Further, FTY720 and NSCs efficiently prolonged the survival and improved sensorimotor function of shiverer mice. Together, these data demonstrate a direct effect of FTY720, beyond its known immunomodulatory capacity, in NSC differentiation and myelin development as a novel mechanism underlying its therapeutic effect in demyelinating diseases.


Therapeutic effect of baicalin on experimental autoimmune encephalomyelitis is mediated by SOCS3 regulatory pathway.

  • Yuan Zhang‎ et al.
  • Scientific reports‎
  • 2015‎

Natural compounds derived from medicinal plants have long been considered a rich source of novel therapeutic agents. Baicalin (Ba) is a bioactive flavonoid compound derived from the root of Scutellaria baicalensis, an herb widely used in traditional medicine for the treatment of various inflammatory diseases. In this study, we investigate the effects and mechanism of action of Ba in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Ba treatment effectively ameliorated clinical disease severity in myelin oligodendrocyte glycoprotein (MOG)35-55 peptide-induced EAE, and reduced inflammation and demyelination of the central nervous system (CNS). Ba reduced infiltration of immune cells into the CNS, inhibited expression of proinflammatory molecules and chemokines, and prevented Th1 and Th17 cell differentiation via STAT/NFκB signaling pathways. Further, we showed that SOCS3 induction is essential to the effects of Ba, given that the inhibitory effect of Ba on pathogenic Th17 responses was largely abolished when SOCS3 signaling was knocked down. Taken together, our findings demonstrate that Ba has significant potential as a novel anti-inflammatory agent for therapy of autoimmune diseases such as MS.


RETRACTED: Neural Stem Cells Engineered to Express Three Therapeutic Factors Mediate Recovery from Chronic Stage CNS Autoimmunity.

  • Xing Li‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2016‎

Treatment of chronic neurodegenerative diseases such as multiple sclerosis (MS) remains a major challenge. Here we genetically engineer neural stem cells (NSCs) to produce a triply therapeutic cocktail comprising IL-10, NT-3, and LINGO-1-Fc, thus simultaneously targeting all mechanisms underlie chronicity of MS in the central nervous system (CNS): persistent inflammation, loss of trophic support for oligodendrocytes and neurons, and accumulation of neuroregeneration inhibitors. After transplantation, NSCs migrated into the CNS inflamed foci and delivered these therapeutic molecules in situ. NSCs transduced with one, two, or none of these molecules had no or limited effect when injected at the chronic stage of experimental autoimmune encephalomyelitis; cocktail-producing NSCs, in contrast, mediated the most effective recovery through inducing M2 macrophages/microglia, reducing astrogliosis, and promoting axonal integrity and endogenous oligodendrocyte/neuron differentiation. These engineered NSCs simultaneously target major mechanisms underlying chronicity of multiple sclerosis (MS) and encephalomyelitis (EAE), thus representing a novel and potentially effective therapy for the chronic stage of MS, for which there is currently no treatment available.


Low expression of complement inhibitory protein CD59 contributes to humoral autoimmunity against astrocytes.

  • Zhen Wang‎ et al.
  • Brain, behavior, and immunity‎
  • 2017‎

Neuromyelitis optica spectrum disorder is primarily an anti-aquaporin 4 autoantibody-mediated, central nervous system-restricted channelopathy. Patients frequently develop central nervous system-restricted lesions even though autoantigen aquaporin 4 in neuromyelitis optica spectrum disorder is broadly distributed in the central nervous system and peripheral organs. The cause of such tissue-specific immune response remains largely unknown. We confirmed here that CD59, an inhibitory regulator of the complement membrane attack complex, is expressed and co-localized with aquaporin 4 in peripheral organs but is only minimally expressed in astrocytes in the central nervous system. In addition, we further found that CD59 overexpression in mouse brains decreased demyelination, blocked the loss of astrocytes and aquaporin 4, and inhibited membrane attack complex formation and infiltration of inflammatory cells. Inactivation of CD59 in mouse peripheral aquaporin 4-expressing cells and tissues led to complement-dependent cytotoxicity. In accordance with the mouse data, human samples presented higher expression of CD59 in many aquaporin 4-expressing peripheral tissues but not in astrocytes. Silencing or blocking CD59 in aquaporin 4-expressing human tracheal epithelial and skeletal muscle cells induced membrane attack complex formation and cytotoxicity, which suggests a protective role of CD59 in anti-aquaporin 4 antibodies-mediated complement toxicity. Our findings suggest that low CD59 expression in astrocytes may contribute to central nervous system-restricted lesions in neuromyelitis optica spectrum disorder. Restoring CD59 expression in astrocytes may serve as a novel therapeutic target of neuromyelitis optica spectrum disorder.


Matrine promotes NT3 expression in CNS cells in experimental autoimmune encephalomyelitis.

  • Ming-Liang Zhang‎ et al.
  • Neuroscience letters‎
  • 2017‎

Neurotrophin 3 (NT3) is a potent neurotrophic factor for promoting remyelination and recovery of neuronal function; upregulation of its expression in the central nervous system (CNS) is thus of major therapeutic importance for neurological deficits. Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flavescent, has been recently reported to effectively ameliorate clinical signs in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), by secreting antiinflammatory cytokines. In the present study, our goal was to investigate whether MAT could affect NT3 expression of glial cells in the CNS, the major cell populations in the CNS foci of MS/EAE. We found that MAT markedly upregulated NT3 expression in the CNS not only by microglia/macrophages and astrocytes, but also by oligodendrocyte precursor cells, indicative of both paracrine and autocrine effects on myelinating cells. While MAT treatment reduced the numbers of iNOS+ M1, but increased Arg1+ M2 microglia/macrophage phenotypes, NT3 expression was upregulated in both phenotypes. These results indicate that MAT therapy for EAE acts, at least in part, by stimulating local production of NT3 by glial cells in the CNS, which protects neural cells from CNS inflammation-induced tissue damage.


Elevated expression of granulocyte-macrophage colony-stimulating factor receptor in multiple sclerosis lesions.

  • Jaime Imitola‎ et al.
  • Journal of neuroimmunology‎
  • 2018‎

Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease that disproportionately affects young adults, leading to disability and high costs to society. Infiltration of T cells and monocytes into the central nervous system (CNS) is critical for disease initiation and progression. However, despite a great deal of effort the molecular mechanisms by which immune cells initiate and perpetuate CNS damage in MS have not yet been elucidated. In experimental autoimmune encephalomyelitis (EAE), an animal model of MS, granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by pathogenic Th1 and Th17 cells is critical for the recruitment of monocytes into the CNS during the initial stage of disease. We and others have recently shown that, compared with healthy individuals, MS patients have greater numbers of CD4+ and CD8+ T cells that produce GM-CSF. Here, we describe the expression of GM-CSF and its receptor, GM-CSFR, in normal brain and MS lesions. Our data show that in acute and chronic MS lesions, microglia and astrocytes have upregulated expression of GM-CSFR; in addition, we show that GM-CSF-associated molecules are also upregulated in MS lesions. These findings further strengthen the argument that GM-CSF signaling contributes to MS pathogenesis.


Carnosol Modulates Th17 Cell Differentiation and Microglial Switch in Experimental Autoimmune Encephalomyelitis.

  • Xing Li‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Medicinal plants as a rich pool for developing novel small molecule therapeutic medicine have been used for thousands of years. Carnosol as a bioactive diterpene compound originated from Rosmarinus officinalis (Rosemary) and Salvia officinalis, herbs extensively applied in traditional medicine for the treatment of multiple autoimmune diseases (1). In this study, we investigated the therapeutic effects and molecule mechanism of carnosol in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Carnosol treatment significantly alleviated clinical development in the myelin oligodendrocyte glycoprotein (MOG35-55) peptide-induced EAE model, markedly decreased inflammatory cell infiltration into the central nervous system and reduced demyelination. Further, carnosol inhibited Th17 cell differentiation and signal transducer and activator of transcription 3 phosphorylation, and blocked transcription factor NF-κB nuclear translocation. In the passive-EAE model, carnosol treatment also significantly prevented Th17 cell pathogenicity. Moreover, carnosol exerted its therapeutic effects in the chronic stage of EAE, and, remarkably, switched the phenotypes of infiltrated macrophage/microglia. Taken together, our results show that carnosol has enormous potential for development as a therapeutic agent for autoimmune diseases such as MS.


SIRT1 inactivation switches reactive astrocytes to an antiinflammatory phenotype in CNS autoimmunity.

  • Weifeng Zhang‎ et al.
  • The Journal of clinical investigation‎
  • 2022‎

Astrocytes are highly heterogeneous in their phenotype and function, which contributes to CNS disease, repair, and aging; however, the molecular mechanism of their functional states remains largely unknown. Here, we show that activation of sirtuin 1 (SIRT1), a protein deacetylase, played an important role in the detrimental actions of reactive astrocytes, whereas its inactivation conferred these cells with antiinflammatory functions that inhibited the production of proinflammatory mediators by myeloid cells and microglia and promoted the differentiation of oligodendrocyte progenitor cells. Mice with astrocyte-specific Sirt1 knockout (Sirt1-/-) had suppressed progression of experimental autoimmune encephalomyelitis (EAE), an animal model of CNS inflammatory demyelinating disease. Ongoing EAE was also suppressed when Sirt1 expression in astrocytes was diminished by a CRISPR/Cas vector, resulting in reduced demyelination, decreased numbers of T cells, and an increased rate of IL-10-producing macrophages and microglia in the CNS, whereas the peripheral immune response remained unaffected. Mechanistically, Sirt1-/- astrocytes expressed a range of nuclear factor erythroid-derived 2-like 2 (Nfe2l2) target genes, and Nfe2l2 deficiency shifted the beneficial action of Sirt1-/- astrocytes to a detrimental one. These findings identify an approach for switching the functional state of reactive astrocytes that will facilitate the development of astrocyte-targeting therapies for inflammatory neurodegenerative diseases such as multiple sclerosis.


Primaquine elicits Foxp3+ regulatory T cells with a superior ability to limit CNS autoimmune inflammation.

  • Rodolfo Thome‎ et al.
  • Journal of autoimmunity‎
  • 2020‎

Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) are neuroinflammatory conditions where inflammatory CD4+ T cells play a major role. Forkhead box P3 (Foxp3)+ regulatory T (Treg) cells suppress inflammation and an increase in their numbers and activity is beneficial for MS and EAE. However, studies have shown that Treg cells can transdifferentiate to pathogenic Th17 cells under inflammatory conditions. Drugs that stimulate Treg cell induction and their resistance to inflammatory stimuli are necessary to develop effective therapies to treat MS. Here, we show that primaquine (PQ), an anti-malarial drug, suppresses EAE through the stimulation of Foxp3+ Treg cells. PQ-elicited Treg cells are refractory to inflammatory stimuli and suppress EAE. Additionally, PQ-elicited Foxp3+ Treg cells were more efficient in suppressing the proliferation of responder cells compared to PBS-elicited Treg cells. Although PQ does not directly induce Foxp3+ Treg cell differentiation from naïve T cells, it modulated dendritic cells (DCs) to induce Foxp3+ Treg cells in an indoleamine 2,3 dioxygenase (IDO)-dependent manner. Together, our results show that PQ elicits Foxp3+ Treg cells with a superior suppressive activity to reduce EAE. PQ has the potential as a safe and effective treatment for MS and other CNS autoimmune inflammatory diseases.


Interferon-γ/Interleukin-27 Axis Induces Programmed Death Ligand 1 Expression in Monocyte-Derived Dendritic Cells and Restores Immune Tolerance in Central Nervous System Autoimmunity.

  • Giacomo Casella‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Antigen (Ag)-specific tolerance induction by intravenous (i. v.) injection of high-dose auto-Ags has been explored for therapy of autoimmune diseases, including multiple sclerosis (MS). It is thought that the advantage of such Ag-specific therapy over non-specific immunomodulatory treatments would be selective suppression of a pathogenic immune response without impairing systemic immunity, thus avoiding adverse effects of immunosuppression. Auto-Ag i.v. tolerance induction has been extensively studied in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and limited clinical trials demonstrated that it is safe and beneficial to a subset of MS patients. Nonetheless, the mechanisms of i.v. tolerance induction are incompletely understood, hampering the development of better approaches and their clinical application. Here, we describe a pathway whereby auto-Ag i.v. injected into mice with ongoing clinical EAE induces interferon-gamma (IFN-γ) secretion by auto-Ag-specific CD4+ T cells, triggering interleukin (IL)-27 production by conventional dendritic cells type 1 (cDC1). IL-27 then, via signal transducer and activator of transcription 3 activation, induces programmed death ligand 1 (PD-L1) expression by monocyte-derived dendritic cells (moDCs) in the central nervous system of mice with EAE. PD-L1 interaction with programmed cell death protein 1 on pathogenic CD4+ T cells leads to their apoptosis/anergy, resulting in disease amelioration. These findings identify a key role of the IFN-γ/IL-27/PD-L1 axis, involving T cells/cDC1/moDCs in the induction of i.v. tolerance.


IFN-β Acts on Monocytes to Ameliorate CNS Autoimmunity by Inhibiting Proinflammatory Cross-Talk Between Monocytes and Th Cells.

  • Javad Rasouli‎ et al.
  • Frontiers in immunology‎
  • 2021‎

IFN-β has been the treatment for multiple sclerosis (MS) for almost three decades, but understanding the mechanisms underlying its beneficial effects remains incomplete. We have shown that MS patients have increased numbers of GM-CSF+ Th cells in circulation, and that IFN-β therapy reduces their numbers. GM-CSF expression by myelin-specific Th cells is essential for the development of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. These findings suggested that IFN-β therapy may function via suppression of GM-CSF production by Th cells. In the current study, we elucidated a feedback loop between monocytes and Th cells that amplifies autoimmune neuroinflammation, and found that IFN-β therapy ameliorates central nervous system (CNS) autoimmunity by inhibiting this proinflammatory loop. IFN-β suppressed GM-CSF production in Th cells indirectly by acting on monocytes, and IFN-β signaling in monocytes was required for EAE suppression. IFN-β increased IL-10 expression by monocytes, and IL-10 was required for the suppressive effects of IFN-β. IFN-β treatment suppressed IL-1β expression by monocytes in the CNS of mice with EAE. GM-CSF from Th cells induced IL-1β production by monocytes, and, in a positive feedback loop, IL-1β augmented GM-CSF production by Th cells. In addition to GM-CSF, TNF and FASL expression by Th cells was also necessary for IL-1β production by monocyte. IFN-β inhibited GM-CSF, TNF, and FASL expression by Th cells to suppress IL-1β secretion by monocytes. Overall, our study describes a positive feedback loop involving several Th cell- and monocyte-derived molecules, and IFN-β actions on monocytes disrupting this proinflammatory loop.


Distinct Role of IL-27 in Immature and LPS-Induced Mature Dendritic Cell-Mediated Development of CD4+ CD127+3G11+ Regulatory T Cell Subset.

  • Fang Zhou‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Interleukin-27 (IL-27) plays an important role in regulation of anti-inflammatory responses and autoimmunity; however, the molecular mechanisms of IL-27 in modulation of immune tolerance and autoimmunity have not been fully elucidated. Dendritic cells (DCs) play a central role in regulating immune responses mediated by innate and adaptive immune systems, but regulatory mechanisms of DCs in CD4+ T cell-mediated immune responses have not yet been elucidated. Here we show that IL-27 treated mature DCs induced by LPS inhibit immune tolerance mediated by LPS-stimulated DCs. IL-27 treatment facilitates development of the CD4+ CD127+3G11+ regulatory T cell subset in vitro and in vivo. By contrast, IL-27 treated immature DCs fail to modulate development of the CD4+CD127+3G11+ regulatory T cell sub-population in vitro and in vivo. Our results suggest that IL-27 may break immune tolerance induced by LPS-stimulated mature DCs through modulating development of a specific CD4+ regulatory T cell subset mediated by 3G11 and CD127. Our data reveal a new cellular regulatory mechanism of IL-27 that targets DC-mediated immune responses in autoimmune diseases such as multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: