Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss.

  • Marco Quarta‎ et al.
  • Nature communications‎
  • 2017‎

Volumetric muscle loss (VML) is associated with loss of skeletal muscle function, and current treatments show limited efficacy. Here we show that bioconstructs suffused with genetically-labelled muscle stem cells (MuSCs) and other muscle resident cells (MRCs) are effective to treat VML injuries in mice. Imaging of bioconstructs implanted in damaged muscles indicates MuSCs survival and growth, and ex vivo analyses show force restoration of treated muscles. Histological analysis highlights myofibre formation, neovascularisation, but insufficient innervation. Both innervation and in vivo force production are enhanced when implantation of bioconstructs is followed by an exercise regimen. Significant improvements are also observed when bioconstructs are used to treat chronic VML injury models. Finally, we demonstrate that bioconstructs made with human MuSCs and MRCs can generate functional muscle tissue in our VML model. These data suggest that stem cell-based therapies aimed to engineer tissue in vivo may be effective to treat acute and chronic VML.


Treatment of volumetric muscle loss in mice using nanofibrillar scaffolds enhances vascular organization and integration.

  • Karina H Nakayama‎ et al.
  • Communications biology‎
  • 2019‎

Traumatic skeletal muscle injuries cause irreversible tissue damage and impaired revascularization. Engineered muscle is promising for enhancing tissue revascularization and regeneration in injured muscle. Here we fabricated engineered skeletal muscle composed of myotubes interspersed with vascular endothelial cells using spatially patterned scaffolds that induce aligned cellular organization, and then assessed their therapeutic benefit for treatment of murine volumetric muscle loss. Murine skeletal myoblasts co-cultured with endothelial cells in aligned nanofibrillar scaffolds form endothelialized and aligned muscle with longer myotubes, more synchronized contractility, and more abundant secretion of angiogenic cytokines, compared to endothelialized engineered muscle formed from randomly-oriented scaffolds. Treatment of traumatically injured muscle with endothelialized and aligned skeletal muscle promotes the formation of highly organized myofibers and microvasculature, along with greater vascular perfusion, compared to treatment of muscle derived from randomly-oriented scaffolds. This work demonstrates the potential of endothelialized and aligned engineered skeletal muscle to promote vascular regeneration following transplantation.


Butyrate Shapes Immune Cell Fate and Function in Allergic Asthma.

  • William Yip‎ et al.
  • Frontiers in immunology‎
  • 2021‎

The microbiome plays a fundamental role in how the immune system develops and how inflammatory responses are shaped and regulated. The "gut-lung axis" is a relatively new term that highlights a crucial biological crosstalk between the intestinal microbiome and lung. A growing body of literature suggests that dysbiosis, perturbation of the gut microbiome, is a driving force behind the development, and severity of allergic asthma. Animal models have given researchers new insights into how gut microbe-derived components and metabolites, such as short-chain fatty acids (SCFAs), influence the development of asthma. While the full understanding of how SCFAs influence allergic airway disease remains obscure, a recurring theme of epigenetic regulation of gene expression in several immune cell compartments is emerging. This review will address our current understanding of how SCFAs, and specifically butyrate, orchestrates cell behavior, and epigenetic changes and will provide a detailed overview of the effects of these modifications on immune cells in the context of allergic airway disease.


Basophils promote barrier dysfunction and resolution in the atopic skin.

  • Christophe Pellefigues‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2021‎

The type 2 cytokines IL-4 and IL-13 promote not only atopic dermatitis (AD) but also the resolution of inflammation. How type 2 cytokines participate in the resolution of AD is poorly known.


Reduced genetic potential for butyrate fermentation in the gut microbiome of infants who develop allergic sensitization.

  • Alissa Cait‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2019‎

Allergic disease is the most frequent chronic health issue in children and has been linked to early-life gut microbiome dysbiosis. Many lines of evidence suggest that microbially derived short-chain fatty acids, and particularly butyrate, can promote immune tolerance.


The Aspergillus fumigatus Sialidase (Kdnase) Contributes to Cell Wall Integrity and Virulence in Amphotericin B-Treated Mice.

  • Jason R Nesbitt‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Aspergillus fumigatus is a filamentous fungus that can cause a life-threatening invasive pulmonary aspergillosis (IPA) in immunocompromised individuals. We previously characterized an exo-sialidase from A. fumigatus that prefers the sialic acid substrate, 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (Kdn); hence it is a Kdnase. Sialidases are known virulence factors in other pathogens; therefore, the goal of our study was to evaluate the importance of Kdnase in A. fumigatus. A kdnase knockout strain (Δkdnase) was unable to grow on medium containing Kdn and displayed reduced growth and abnormal morphology. Δkdnase was more sensitive than wild type to hyperosmotic conditions and the antifungal agent, amphotericin B. In contrast, Δkdnase had increased resistance to nikkomycin, Congo Red and Calcofluor White indicating activation of compensatory cell wall chitin deposition. Increased cell wall thickness and chitin content in Δkdnase were confirmed by electron and immunofluorescence microscopy. In a neutropenic mouse model of invasive aspergillosis, the Δkdnase strain had attenuated virulence and a significantly lower lung fungal burden but only in animals that received liposomal amphotericin B after spore exposure. Macrophage numbers were almost twofold higher in lung sections from mice that received the Δkdnase strain, possibly related to higher survival of macrophages that internalized the Δkdnase conidia. Thus, A. fumigatus Kdnase is important for fungal cell wall integrity and virulence, and because Kdnase is not present in the host, it may represent a potential target for the development of novel antifungal agents.


Inhibition of Methyltransferase Setd7 Allows the In Vitro Expansion of Myogenic Stem Cells with Improved Therapeutic Potential.

  • Robert N Judson‎ et al.
  • Cell stem cell‎
  • 2018‎

The development of cell therapy for repairing damaged or diseased skeletal muscle has been hindered by the inability to significantly expand immature, transplantable myogenic stem cells (MuSCs) in culture. To overcome this limitation, a deeper understanding of the mechanisms regulating the transition between activated, proliferating MuSCs and differentiation-primed, poorly engrafting progenitors is needed. Here, we show that methyltransferase Setd7 facilitates such transition by regulating the nuclear accumulation of β-catenin in proliferating MuSCs. Genetic or pharmacological inhibition of Setd7 promotes in vitro expansion of MuSCs and increases the yield of primary myogenic cell cultures. Upon transplantation, both mouse and human MuSCs expanded with a Setd7 small-molecule inhibitor are better able to repopulate the satellite cell niche, and treated mouse MuSCs show enhanced therapeutic potential in preclinical models of muscular dystrophy. Thus, Setd7 inhibition may help bypass a key obstacle in the translation of cell therapy for muscle disease.


MR1-dependence of unmetabolized folic acid side-effects.

  • Jeffry S Tang‎ et al.
  • Frontiers in immunology‎
  • 2022‎

The fortification of flour with folic acid for the prevention of neural tube defects (NTD) is currently mandated in over eighty countries worldwide, hence compelling its consumption by the greater part of the world's population. Notwithstanding its beneficial impact on rates of NTD, pervasive folic acid supplementation has invariably led to additive daily intakes reaching well beyond their original target, resulting in the circulation of unmetabolized folic acid. Associated idiopathic side-effects ranging from allergies to cancer have been suggested, albeit inconclusively. Herein, we hypothesize that their inconsistent detection and elusive etiology are linked to the in vivo generation of the immunosuppressive folic acid metabolite 6-formylpterin, which interferes with the still emerging and varied functions of Major Histocompatibility Complex-related molecule 1 (MR1)-restricted T cells. Accordingly, we predict that fortification-related adverse health outcomes can be eliminated by substituting folic acid with the bioequivalent folate vitamer 5-methyltetrahydrofolate, which does not break down into 6-formylpterin.


Potential Association Between Dietary Fibre and Humoral Response to the Seasonal Influenza Vaccine.

  • Alissa Cait‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Influenza vaccination is an effective public health measure to reduce the risk of influenza illness, particularly when the vaccine is well matched to circulating strains. Notwithstanding, the efficacy of influenza vaccination varies greatly among vaccinees due to largely unknown immunological determinants, thereby dampening population-wide protection. Here, we report that dietary fibre may play a significant role in humoral vaccine responses. We found dietary fibre intake and the abundance of fibre-fermenting intestinal bacteria to be positively correlated with humoral influenza vaccine-specific immune responses in human vaccinees, albeit without reaching statistical significance. Importantly, this correlation was largely driven by first-time vaccinees; prior influenza vaccination negatively correlated with vaccine immunogenicity. In support of these observations, dietary fibre consumption significantly enhanced humoral influenza vaccine responses in mice, where the effect was mechanistically linked to short-chain fatty acids, the bacterial fermentation product of dietary fibre. Overall, these findings may bear significant importance for emerging infectious agents, such as COVID-19, and associated de novo vaccinations.


G9a regulates group 2 innate lymphoid cell development by repressing the group 3 innate lymphoid cell program.

  • Frann Antignano‎ et al.
  • The Journal of experimental medicine‎
  • 2016‎

Innate lymphoid cells (ILCs) are emerging as important regulators of homeostatic and disease-associated immune processes. Despite recent advances in defining the molecular pathways that control development and function of ILCs, the epigenetic mechanisms that regulate ILC biology are unknown. Here, we identify a role for the lysine methyltransferase G9a in regulating ILC2 development and function. Mice with a hematopoietic cell-specific deletion of G9a (Vav.G9a(-/-) mice) have a severe reduction in ILC2s in peripheral sites, associated with impaired development of immature ILC2s in the bone marrow. Accordingly, Vav.G9a(-/-) mice are resistant to the development of allergic lung inflammation. G9a-dependent dimethylation of histone 3 lysine 9 (H3K9me2) is a repressive histone mark that is associated with gene silencing. Genome-wide expression analysis demonstrated that the absence of G9a led to increased expression of ILC3-associated genes in developing ILC2 populations. Further, we found high levels of G9a-dependent H3K9me2 at ILC3-specific genetic loci, demonstrating that G9a-mediated repression of ILC3-associated genes is critical for the optimal development of ILC2s. Together, these results provide the first identification of an epigenetic regulatory mechanism in ILC development and function.


Biomechanics show stem cell necessity for effective treatment of volumetric muscle loss using bioengineered constructs.

  • Marco Quarta‎ et al.
  • NPJ Regenerative medicine‎
  • 2018‎

Despite the regenerative capacity of muscle, tissue volume is not restored after volumetric muscle loss (VML), perhaps due to a loss-of-structural extracellular matrix. We recently demonstrated the structural and functional restoration of muscle tissue in a mouse model of VML using an engineered "bioconstruct," comprising an extracellular matrix scaffold (decellularized muscle), muscle stem cells (MuSCs), and muscle-resident cells (MRCs). To test the ability of the cell-based bioconstruct to restore whole-muscle biomechanics, we measured biomechanical parameters in uninjured muscles, muscles injured to produce VML lesions, and in muscles that were injured and then treated by implanting either the scaffolds alone or with bioconstructs containing the scaffolds, MuSCs, and MRCs. We measured the active and passive forces over a range of lengths, viscoelastic force relaxation, optimal length, and twitch dynamics. Injured muscles showed a narrowed length-tension curve or lower force over a narrower range of muscle lengths, and increased passive force. When treated with bioconstructs, but not with scaffolds alone, injured muscles showed active and passive length-tension relationships that were not different from uninjured muscles. Moreover, injured muscles treated with bioconstructs exhibited reduced fibrosis compared to injured muscles either untreated or treated with scaffolds alone. The cell-based bioconstruct is a promising treatment approach for future translational efforts to restore whole-muscle biomechanics in muscles with VML lesions.


Rehabilitative exercise and spatially patterned nanofibrillar scaffolds enhance vascularization and innervation following volumetric muscle loss.

  • Karina H Nakayama‎ et al.
  • NPJ Regenerative medicine‎
  • 2018‎

Muscle regeneration can be permanently impaired by traumatic injuries, despite the high regenerative capacity of skeletal muscle. Implantation of engineered biomimetic scaffolds to the site of muscle ablation may serve as an attractive off-the-shelf therapeutic approach. The objective of the study was to histologically assess the therapeutic benefit of a three-dimensional spatially patterned collagen scaffold, in conjunction with rehabilitative exercise, for treatment of volumetric muscle loss. To mimic the physiologic organization of skeletal muscle, which is generally composed of myofibers aligned in parallel, three-dimensional parallel-aligned nanofibrillar collagen scaffolds were fabricated. When implanted into the ablated murine tibialis anterior muscle, the aligned nanofibrillar scaffolds, in conjunction with voluntary caged wheel exercise, significantly improved the density of perfused microvessels, in comparison to treatments of the randomly oriented nanofibrillar scaffold, decellularized scaffold, or in the untreated control group. The abundance of neuromuscular junctions was 19-fold higher when treated with aligned nanofibrillar scaffolds in conjunction with exercise, in comparison to treatment of aligned scaffold without exercise. Although, the density of de novo myofibers was not significantly improved by aligned scaffolds, regardless of exercise activity, the cross-sectional area of regenerating myofibers was increased by > 60% when treated with either aligned and randomly oriented scaffolds, in comparison to treatment of decellularized scaffold or untreated controls. These findings demonstrate that voluntary exercise improved the regenerative effect of aligned scaffolds by augmenting neurovascularization, and have important implications in the design of engineered biomimetic scaffolds for treatment of traumatic muscle injury.


Conventional laboratory housing increases morbidity and mortality in research rodents: results of a meta-analysis.

  • Jessica Cait‎ et al.
  • BMC biology‎
  • 2022‎

Over 120 million mice and rats are used annually in research, conventionally housed in shoebox-sized cages that restrict natural behaviours (e.g. nesting and burrowing). This can reduce physical fitness, impair thermoregulation and reduce welfare (e.g. inducing abnormal stereotypic behaviours). In humans, chronic stress has biological costs, increasing disease risks and potentially shortening life. Using a pre-registered protocol ( https://atrium.lib.uoguelph.ca/xmlui/handle/10214/17955 ), this meta-analysis therefore tested the hypothesis that, compared to rodents in 'enriched' housing that better meets their needs, conventional housing increases stress-related morbidity and all-cause mortality.


Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells.

  • Tapash Jay Sarkar‎ et al.
  • Nature communications‎
  • 2020‎

Aging is characterized by a gradual loss of function occurring at the molecular, cellular, tissue and organismal levels. At the chromatin level, aging associates with progressive accumulation of epigenetic errors that eventually lead to aberrant gene regulation, stem cell exhaustion, senescence, and deregulated cell/tissue homeostasis. Nuclear reprogramming to pluripotency can revert both the age and the identity of any cell to that of an embryonic cell. Recent evidence shows that transient reprogramming can ameliorate age-associated hallmarks and extend lifespan in progeroid mice. However, it is unknown how this form of rejuvenation would apply to naturally aged human cells. Here we show that transient expression of nuclear reprogramming factors, mediated by expression of mRNAs, promotes a rapid and broad amelioration of cellular aging, including resetting of epigenetic clock, reduction of the inflammatory profile in chondrocytes, and restoration of youthful regenerative response to aged, human muscle stem cells, in each case without abolishing cellular identity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: