2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 77 papers

Comparative Systems Analyses Reveal Molecular Signatures of Clinically tested Vaccine Adjuvants.

  • Thorunn A Olafsdottir‎ et al.
  • Scientific reports‎
  • 2016‎

A better understanding of the mechanisms of action of human adjuvants could inform a rational development of next generation vaccines for human use. Here, we exploited a genome wide transcriptomics analysis combined with a systems biology approach to determine the molecular signatures induced by four clinically tested vaccine adjuvants, namely CAF01, IC31, GLA-SE and Alum in mice. We report signature molecules, pathways, gene modules and networks, which are shared by or otherwise exclusive to these clinical-grade adjuvants in whole blood and draining lymph nodes of mice. Intriguingly, co-expression analysis revealed blood gene modules highly enriched for molecules with documented roles in T follicular helper (TFH) and germinal center (GC) responses. We could show that all adjuvants enhanced, although with different magnitude and kinetics, TFH and GC B cell responses in draining lymph nodes. These results represent, to our knowledge, the first comparative systems analysis of clinically tested vaccine adjuvants that may provide new insights into the mechanisms of action of human adjuvants.


FdeC, a novel broadly conserved Escherichia coli adhesin eliciting protection against urinary tract infections.

  • Barbara Nesta‎ et al.
  • mBio‎
  • 2012‎

The increasing antibiotic resistance of pathogenic Escherichia coli species and the absence of a pan-protective vaccine pose major health concerns. We recently identified, by subtractive reverse vaccinology, nine Escherichia coli antigens that protect mice from sepsis. In this study, we characterized one of them, ECOK1_0290, named FdeC (factor adherence E. coli) for its ability to mediate E. coli adhesion to mammalian cells and extracellular matrix. This adhesive propensity was consistent with the X-ray structure of one of the FdeC domains that shows a striking structural homology to Yersinia pseudotuberculosis invasin and enteropathogenic E. coli intimin. Confocal imaging analysis revealed that expression of FdeC on the bacterial surface is triggered by interaction of E. coli with host cells. This phenotype was also observed in bladder tissue sections derived from mice infected with an extraintestinal strain. Indeed, we observed that FdeC contributes to colonization of the bladder and kidney, with the wild-type strain outcompeting the fdeC mutant in cochallenge experiments. Finally, intranasal mucosal immunization with recombinant FdeC significantly reduced kidney colonization in mice challenged transurethrally with uropathogenic E. coli, supporting a role for FdeC in urinary tract infections.


Vaccination against Neisseria meningitidis using three variants of the lipoprotein GNA1870.

  • Vega Masignani‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Sepsis and meningitis caused by serogroup B meningococcus are devastating diseases of infants and young adults, which cannot yet be prevented by vaccination. By genome mining, we discovered GNA1870, a new surface-exposed lipoprotein of Neisseria meningitidis that induces high levels of bactericidal antibodies. The antigen is expressed by all strains of N. meningitidis tested. Sequencing of the gene in 71 strains representative of the genetic and geographic diversity of the N. meningitidis population, showed that the protein can be divided into three variants. Conservation within each variant ranges between 91.6 to 100%, while between the variants the conservation can be as low as 62.8%. The level of expression varies between strains, which can be classified as high, intermediate, and low expressors. Antibodies against a recombinant form of the protein elicit complement-mediated killing of the strains that carry the same variant and induce passive protection in the infant rat model. Bactericidal titers are highest against those strains expressing high yields of the protein; however, even the very low expressors are efficiently killed. The novel antigen is a top candidate for the development of a new vaccine against meningococcus.


SARS--beginning to understand a new virus.

  • Konrad Stadler‎ et al.
  • Nature reviews. Microbiology‎
  • 2003‎

The 114-day epidemic of the severe acute respiratory syndrome (SARS) swept 29 countries, affected a reported 8,098 people, left 774 patients dead and almost paralyzed the Asian economy. Aggressive quarantine measures, possibly aided by rising summer temperatures, successfully terminated the first eruption of SARS and provided at least a temporal break, which allows us to consolidate what we have learned so far and plan for the future. Here, we review the genomics of the SARS coronavirus (SARS-CoV), its phylogeny, antigenic structure, immune response and potential therapeutic interventions should the SARS epidemic flare up again.


Rational Design of a Glycoconjugate Vaccine against Group A Streptococcus.

  • Roberta Di Benedetto‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

No commercial vaccine is yet available against Group A Streptococcus (GAS), major cause of pharyngitis and impetigo, with a high frequency of serious sequelae in low- and middle-income countries. Group A Carbohydrate (GAC), conjugated to an appropriate carrier protein, has been proposed as an attractive vaccine candidate. Here, we explored the possibility to use GAS Streptolysin O (SLO), SpyCEP and SpyAD protein antigens with dual role of antigen and carrier, to enhance the efficacy of the final vaccine and reduce its complexity. All protein antigens resulted good carrier for GAC, inducing similar anti-GAC IgG response to the more traditional CRM197 conjugate in mice. However, conjugation to the polysaccharide had a negative impact on the anti-protein responses, especially in terms of functionality as evaluated by an IL-8 cleavage assay for SpyCEP and a hemolysis assay for SLO. After selecting CRM197 as carrier, optimal conditions for its conjugation to GAC were identified through a Design of Experiment approach, improving process robustness and yield This work supports the development of a vaccine against GAS and shows how novel statistical tools and recent advancements in the field of conjugation can lead to improved design of glycoconjugate vaccines.


Long noncoding RNAs are involved in multiple immunological pathways in response to vaccination.

  • Diógenes S de Lima‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

Understanding the mechanisms of vaccine-elicited protection contributes to the development of new vaccines. The emerging field of systems vaccinology provides detailed information on host responses to vaccination and has been successfully applied to study the molecular mechanisms of several vaccines. Long noncoding RNAs (lncRNAs) are crucially involved in multiple biological processes, but their role in vaccine-induced immunity has not been explored. We performed an analysis of over 2,000 blood transcriptome samples from 17 vaccine cohorts to identify lncRNAs potentially involved with antibody responses to influenza and yellow fever vaccines. We have created an online database where all results from this analysis can be accessed easily. We found that lncRNAs participate in distinct immunological pathways related to vaccine-elicited responses. Among them, we showed that the expression of lncRNA FAM30A was high in B cells and correlates with the expression of immunoglobulin genes located in its genomic vicinity. We also identified altered expression of these lncRNAs in RNA-sequencing (RNA-seq) data from a cohort of children following immunization with intranasal live attenuated influenza vaccine, suggesting a common role across several diverse vaccines. Taken together, these findings provide evidence that lncRNAs have a significant impact on immune responses induced by vaccination.


Adjuvanting a subunit SARS-CoV-2 nanoparticle vaccine to induce protective immunity in non-human primates.

  • Prabhu S Arunachalam‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2021‎

The development of a portfolio of SARS-CoV-2 vaccines to vaccinate the global population remains an urgent public health imperative. Here, we demonstrate the capacity of a subunit vaccine under clinical development, comprising the SARS-CoV-2 Spike protein receptor-binding domain displayed on a two-component protein nanoparticle (RBD-NP), to stimulate robust and durable neutralizing antibody (nAb) responses and protection against SARS-CoV-2 in non-human primates. We evaluated five different adjuvants combined with RBD-NP including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an alpha-tocopherol-containing squalene-based oil-in-water emulsion used in pandemic influenza vaccines; AS37, a TLR-7 agonist adsorbed to Alum; CpG 1018-Alum (CpG-Alum), a TLR-9 agonist formulated in Alum; or Alum, the most widely used adjuvant. All five adjuvants induced substantial nAb and CD4 T cell responses after two consecutive immunizations. Durable nAb responses were evaluated for RBD-NP/AS03 immunization and the live-virus nAb response was durably maintained up to 154 days post-vaccination. AS03, CpG-Alum, AS37 and Alum groups conferred significant protection against SARS-CoV-2 infection in the pharynges, nares and in the bronchoalveolar lavage. The nAb titers were highly correlated with protection against infection. Furthermore, RBD-NP when used in conjunction with AS03 was as potent as the prefusion stabilized Spike immunogen, HexaPro. Taken together, these data highlight the efficacy of the RBD-NP formulated with clinically relevant adjuvants in promoting robust immunity against SARS-CoV-2 in non-human primates.


Structural insights of a highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody.

  • Jonathan L Torres‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

As the coronavirus disease 2019 (COVID-19) pandemic continues, there is a strong need for highly potent monoclonal antibodies (mAbs) that are resistant against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs). Here, we evaluate the potency of the previously described mAb J08 against these variants using cell-based assays and delve into the molecular details of the binding interaction using cryoelectron microscopy (cryo-EM) and X-ray crystallography. We show that mAb J08 has low nanomolar affinity against most VoCs and binds high on the receptor binding domain (RBD) ridge, away from many VoC mutations. These findings further validate the phase II/III human clinical trial underway using mAb J08 as a monoclonal therapy.


Immune response to SARS-CoV-2 Omicron variant in patients and vaccinees following homologous and heterologous vaccinations.

  • Claudia Maria Trombetta‎ et al.
  • Communications biology‎
  • 2022‎

The SARS-CoV-2 Omicron variant has rapidly replaced the Delta variant of concern. This new variant harbors worrisome mutations on the spike protein, which are able to escape the immunity elicited by vaccination and/or natural infection. To evaluate the impact and susceptibility of different serum samples to the Omicron variant BA.1, samples from COVID-19 patients and vaccinated individuals were tested for their ability to bind and neutralize the original SARS-CoV-2 virus and the Omicron variant BA.1. COVID-19 patients show the most drastic reduction in Omicron-specific antibody response in comparison with the response to the wild-type virus. Antibodies elicited by a triple homologous/heterologous vaccination regimen or following natural SARS-CoV-2 infection combined with a two-dose vaccine course, result in highest neutralization capacity against the Omicron variant BA.1. Overall, these findings confirm that vaccination of COVID-19 survivors and booster dose to vaccinees with mRNA vaccines is the correct strategy to enhance the antibody cross-protection against Omicron variant BA.1.


Production of two SARS-CoV-2 neutralizing antibodies with different potencies in Nicotiana benthamiana.

  • Rachele Frigerio‎ et al.
  • Frontiers in plant science‎
  • 2022‎

Monoclonal antibodies are considered to be highly effective therapeutic tools for the treatment of mild to moderate COVID-19 patients. In the present work, we describe the production of two SARS-CoV-2 human IgG1 monoclonal antibodies recognizing the spike protein receptor-binding domain (RBD) and endowed with neutralizing activity (nAbs) in plants. The first one, mAbJ08-MUT, was previously isolated from a COVID-19 convalescent patient and Fc-engineered to prolong the half-life and reduce the risk of antibody-dependent enhancement. This nAb produced in mammalian cells, delivered in a single intramuscular administration during a Phase I clinical study, was shown to (i) be safe and effectively protect against major variants of concern, and (ii) have some neutralizing activity against the recently emerged omicron variant in a cytopathic-effect-based microneutralization assay (100% inhibitory concentration, IC100 of 15 μg/mL). The second antibody, mAb675, previously isolated from a vaccinated individual, showed an intermediate neutralization activity against SARS-CoV-2 variants. Different accumulation levels of mAbJ08-MUT and mAb675 were observed after transient agroinfiltration in Nicotiana benthamiana plants knocked-out for xylosil and fucosil transferases, leading to yields of ~35 and 150 mg/kg of fresh leaf mass, respectively. After purification, as a result of the proteolytic events affecting the hinge-CH2 region, a higher degradation of mAb675 was observed, compared to mAbJ08-MUT (~18% vs. ~1%, respectively). Both nAbs showed a human-like glycosylation profile, and were able to specifically bind to RBD and compete with angiotensin-converting enzyme 2 binding in vitro. SARS-CoV-2 neutralization assay against the original virus isolated in Wuhan demonstrated the high neutralization potency of the plant-produced mAbJ08-MUT, with levels (IC100 < 17 ng/mL) comparable to those of the cognate antibody produced in a Chinese hamster ovary cell line; conversely, mAb675 exhibited a medium neutralization potency (IC100 ~ 200 ng/mL). All these data confirm that plant expression platforms may represent a convenient and rapid production system of potent nAbs to be used both in therapy and diagnostics in pandemic emergencies.


Efficacy, safety, and immunogenicity of the Shigella sonnei 1790GAHB GMMA candidate vaccine: Results from a phase 2b randomized, placebo-controlled challenge study in adults.

  • Robert W Frenck‎ et al.
  • EClinicalMedicine‎
  • 2021‎

Shigellosis accounts for substantial morbidity and mortality worldwide and is the second most common cause of moderate and severe diarrhoea in children.


A next-generation GMMA-based vaccine candidate to fight shigellosis.

  • Omar Rossi‎ et al.
  • NPJ vaccines‎
  • 2023‎

Shigellosis is a leading cause of diarrheal disease in low-middle-income countries (LMICs). Effective vaccines will help to reduce the disease burden, exacerbated by increasing antibiotic resistance, in the most susceptible population represented by young children. A challenge for a broadly protective vaccine against shigellosis is to cover the most epidemiologically relevant serotypes among >50 Shigella serotypes circulating worldwide. The GMMA platform has been proposed as an innovative delivery system for Shigella O-antigens, and we have developed a 4-component vaccine against S. sonnei, S. flexneri 1b, 2a and 3a identified among the most prevalent Shigella serotypes in LMICs. Driven by the immunogenicity results obtained in clinic with a first-generation mono-component vaccine, a new S. sonnei GMMA construct was generated and combined with three S. flexneri GMMA in a 4-component Alhydrogel formulation (altSonflex1-2-3). This formulation was highly immunogenic, with no evidence of negative antigenic interference in mice and rabbits. The vaccine induced bactericidal antibodies also against heterologous Shigella strains carrying O-antigens different from those included in the vaccine. The Monocyte Activation Test used to evaluate the potential reactogenicity of the vaccine formulation revealed no differences compared to the S. sonnei mono-component vaccine, shown to be safe in several clinical trials in adults. A GLP toxicology study in rabbits confirmed that the vaccine was well tolerated. The preclinical study results support the clinical evaluation of altSonflex1-2-3 in healthy populations, and a phase 1-2 clinical trial is currently ongoing.


Memory-like innate response to booster vaccination with MF-59 adjuvanted influenza vaccine in children.

  • Dmitri Kazmin‎ et al.
  • NPJ vaccines‎
  • 2023‎

The pediatric population receives the majority of vaccines globally, yet there is a paucity of studies on the transcriptional response induced by immunization in this special population. In this study, we performed a systems-level analysis of immune responses to the trivalent inactivated influenza vaccine adjuvanted with MF-59 in children (15-24 months old) and in young, healthy adults. We analyzed transcriptional responses elicited by vaccination in peripheral blood, as well as cellular and antibody responses following primary and booster vaccinations. Our analysis revealed that primary vaccination induced a persistent transcriptional signature of innate immunity; booster vaccination induced a transcriptional signature of an enhanced memory-like innate response, which was consistent with enhanced activation of myeloid cells assessed by flow cytometry. Furthermore, we identified a transcriptional signature of type 1 interferon response post-booster vaccination and at baseline that was correlated with the local reactogenicity to vaccination and defined an early signature that correlated with the hemagglutinin antibody titers. These results highlight an adaptive behavior of the innate immune system in evoking a memory-like response to secondary vaccination and define molecular correlates of reactogenicity and immunogenicity in infants.


High-resolution map of the Fc functions mediated by COVID-19-neutralizing antibodies.

  • Ida Paciello‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2024‎

A growing body of evidence shows that fragment crystallizable (Fc)-dependent antibody effector functions play an important role in protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To unravel the mechanisms that drive these responses, we analyzed the phagocytosis and complement deposition mediated by a panel of 482 human monoclonal antibodies (nAbs) neutralizing the original Wuhan virus, expressed as recombinant IgG1. Our study confirmed that nAbs no longer neutralizing SARS-CoV-2 Omicron variants can retain their Fc functions. Surprisingly, we found that nAbs with the most potent Fc function recognize the N-terminal domain, followed by those targeting class 3 epitopes in the receptor binding domain. Interestingly, nAbs direct against the class 1/2 epitopes in the receptor binding motif, which are the most potent in neutralizing the virus, were the weakest in Fc functions. The divergent properties of the neutralizing and Fc function-mediating antibodies were confirmed by the use of different B cell germlines and by the observation that Fc functions of polyclonal sera differ from the profile observed with nAbs, suggesting that non-neutralizing antibodies also contribute to Fc functions. These data provide a high-resolution picture of the Fc-antibody response to SARS-CoV-2 and suggest that the Fc contribution should be considered for the design of improved vaccines, the selection of therapeutic antibodies, and the evaluation of correlates of protection.


NadA, a novel vaccine candidate of Neisseria meningitidis.

  • Maurizio Comanducci‎ et al.
  • The Journal of experimental medicine‎
  • 2002‎

Neisseria meningitidis is a human pathogen, which, in spite of antibiotic therapy, is still a major cause of mortality due to sepsis and meningitis. Here we describe NadA, a novel surface antigen of N. meningitidis that is present in 52 out of 53 strains of hypervirulent lineages electrophoretic types (ET) ET37, ET5, and cluster A4. The gene is absent in the hypervirulent lineage III, in N. gonorrhoeae and in the commensal species N. lactamica and N. cinerea. The guanine/cytosine content, lower than the chromosome, suggests acquisition by horizontal gene transfer and subsequent limited evolution to generate three well-conserved alleles. NadA has a predicted molecular structure strikingly similar to a novel class of adhesins (YadA and UspA2), forms high molecular weight oligomers, and binds to epithelial cells in vitro supporting the hypothesis that NadA is important for host cell interaction. NadA induces strong bactericidal antibodies and is protective in the infant rat model suggesting that this protein may represent a novel antigen for a vaccine able to control meningococcal disease caused by three hypervirulent lineages.


Recognition of Neisseria meningitidis by the long pentraxin PTX3 and its role as an endogenous adjuvant.

  • Barbara Bottazzi‎ et al.
  • PloS one‎
  • 2015‎

Long pentraxin 3 (PTX3) is a non-redundant component of the humoral arm of innate immunity. The present study was designed to investigate the interaction of PTX3 with Neisseria meningitidis. PTX3 bound acapsular meningococcus, Neisseria-derived outer membrane vesicles (OMV) and 3 selected meningococcal antigens (GNA0667, GNA1030 and GNA2091). PTX3-recognized microbial moieties are conserved structures which fulfil essential microbial functions. Ptx3-deficient mice had a lower antibody response in vaccination protocols with OMV and co-administration of PTX3 increased the antibody response, particularly in Ptx3-deficient mice. Administration of PTX3 reduced the bacterial load in infant rats challenged with Neisseria meningitidis. These results suggest that PTX3 recognizes a set of conserved structures from Neisseria meningitidis and acts as an amplifier/endogenous adjuvant of responses to this bacterium.


Transient facial nerve paralysis (Bell's palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin.

  • David J M Lewis‎ et al.
  • PloS one‎
  • 2009‎

An association was previously established between facial nerve paralysis (Bell's palsy) and intranasal administration of an inactivated influenza virosome vaccine containing an enzymatically active Escherichia coli Heat Labile Toxin (LT) adjuvant. The individual component(s) responsible for paralysis were not identified, and the vaccine was withdrawn.


Designing vaccines for the twenty-first century society.

  • Oretta Finco‎ et al.
  • Frontiers in immunology‎
  • 2014‎

The history of vaccination clearly demonstrates that vaccines have been highly successful in preventing infectious diseases, reducing significantly the incidence of childhood diseases and mortality. However, many infections are still not preventable with the currently available vaccines and they represent a major cause of mortality worldwide. In the twenty-first century, the innovation brought by novel technologies in antigen discovery and formulation together with a deeper knowledge of the human immune responses are paving the way for the development of new vaccines. Final goal will be to rationally design effective vaccines where conventional approaches have failed.


Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2.

  • Syed Sohail Ahmed‎ et al.
  • Science translational medicine‎
  • 2015‎

The sleep disorder narcolepsy is linked to the HLA-DQB1*0602 haplotype and dysregulation of the hypocretin ligand-hypocretin receptor pathway. Narcolepsy was associated with Pandemrix vaccination (an adjuvanted, influenza pandemic vaccine) and also with infection by influenza virus during the 2009 A(H1N1) influenza pandemic. In contrast, very few cases were reported after Focetria vaccination (a differently manufactured adjuvanted influenza pandemic vaccine). We hypothesized that differences between these vaccines (which are derived from inactivated influenza viral proteins) explain the association of narcolepsy with Pandemrix-vaccinated subjects. A mimic peptide was identified from a surface-exposed region of influenza nucleoprotein A that shared protein residues in common with a fragment of the first extracellular domain of hypocretin receptor 2. A significant proportion of sera from HLA-DQB1*0602 haplotype-positive narcoleptic Finnish patients with a history of Pandemrix vaccination (vaccine-associated narcolepsy) contained antibodies to hypocretin receptor 2 compared to sera from nonnarcoleptic individuals with either 2009 A(H1N1) pandemic influenza infection or history of Focetria vaccination. Antibodies from vaccine-associated narcolepsy sera cross-reacted with both influenza nucleoprotein and hypocretin receptor 2, which was demonstrated by competitive binding using 21-mer peptide (containing the identified nucleoprotein mimic) and 55-mer recombinant peptide (first extracellular domain of hypocretin receptor 2) on cell lines expressing human hypocretin receptor 2. Mass spectrometry indicated that relative to Pandemrix, Focetria contained 72.7% less influenza nucleoprotein. In accord, no durable antibody responses to nucleoprotein were detected in sera from Focetria-vaccinated nonnarcoleptic subjects. Thus, differences in vaccine nucleoprotein content and respective immune response may explain the narcolepsy association with Pandemrix.


Sequence analysis of 96 genomic regions identifies distinct evolutionary lineages within CC156, the largest Streptococcus pneumoniae clonal complex in the MLST database.

  • Monica Moschioni‎ et al.
  • PloS one‎
  • 2013‎

Multi-Locus Sequence Typing (MLST) of Streptococcus pneumoniae is based on the sequence of seven housekeeping gene fragments. The analysis of MLST allelic profiles by eBURST allows the grouping of genetically related strains into Clonal Complexes (CCs) including those genotypes with a common descent from a predicted ancestor. However, the increasing use of MLST to characterize S. pneumoniae strains has led to the identification of a large number of new Sequence Types (STs) causing the merger of formerly distinct lineages into larger CCs. An example of this is the CC156, displaying a high level of complexity and including strains with allelic profiles differing in all seven of the MLST loci, capsular type and the presence of the Pilus Islet-1 (PI-1). Detailed analysis of the CC156 indicates that the identification of new STs, such as ST4945, induced the merging of formerly distinct clonal complexes. In order to discriminate the strain diversity within CC156, a recently developed typing schema, 96-MLST, was used to analyse 66 strains representative of 41 different STs. Analysis of allelic profiles by hierarchical clustering and a minimum spanning tree identified ten genetically distinct evolutionary lineages. Similar results were obtained by phylogenetic analysis on the concatenated sequences with different methods. The identified lineages are homogenous in capsular type and PI-1 presence. ST4945 strains were unequivocally assigned to one of the lineages. In conclusion, the identification of new STs through an exhaustive analysis of pneumococcal strains from various laboratories has highlighted that potentially unrelated subgroups can be grouped into a single CC by eBURST. The analysis of additional loci, such as those included in the 96-MLST schema, will be necessary to accurately discriminate the clonal evolution of the pneumococcal population.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: