2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Designing vaccines for the twenty-first century society.

  • Oretta Finco‎ et al.
  • Frontiers in immunology‎
  • 2014‎

The history of vaccination clearly demonstrates that vaccines have been highly successful in preventing infectious diseases, reducing significantly the incidence of childhood diseases and mortality. However, many infections are still not preventable with the currently available vaccines and they represent a major cause of mortality worldwide. In the twenty-first century, the innovation brought by novel technologies in antigen discovery and formulation together with a deeper knowledge of the human immune responses are paving the way for the development of new vaccines. Final goal will be to rationally design effective vaccines where conventional approaches have failed.


Sequence analysis of 96 genomic regions identifies distinct evolutionary lineages within CC156, the largest Streptococcus pneumoniae clonal complex in the MLST database.

  • Monica Moschioni‎ et al.
  • PloS one‎
  • 2013‎

Multi-Locus Sequence Typing (MLST) of Streptococcus pneumoniae is based on the sequence of seven housekeeping gene fragments. The analysis of MLST allelic profiles by eBURST allows the grouping of genetically related strains into Clonal Complexes (CCs) including those genotypes with a common descent from a predicted ancestor. However, the increasing use of MLST to characterize S. pneumoniae strains has led to the identification of a large number of new Sequence Types (STs) causing the merger of formerly distinct lineages into larger CCs. An example of this is the CC156, displaying a high level of complexity and including strains with allelic profiles differing in all seven of the MLST loci, capsular type and the presence of the Pilus Islet-1 (PI-1). Detailed analysis of the CC156 indicates that the identification of new STs, such as ST4945, induced the merging of formerly distinct clonal complexes. In order to discriminate the strain diversity within CC156, a recently developed typing schema, 96-MLST, was used to analyse 66 strains representative of 41 different STs. Analysis of allelic profiles by hierarchical clustering and a minimum spanning tree identified ten genetically distinct evolutionary lineages. Similar results were obtained by phylogenetic analysis on the concatenated sequences with different methods. The identified lineages are homogenous in capsular type and PI-1 presence. ST4945 strains were unequivocally assigned to one of the lineages. In conclusion, the identification of new STs through an exhaustive analysis of pneumococcal strains from various laboratories has highlighted that potentially unrelated subgroups can be grouped into a single CC by eBURST. The analysis of additional loci, such as those included in the 96-MLST schema, will be necessary to accurately discriminate the clonal evolution of the pneumococcal population.


A phase I, randomized, controlled, dose-ranging study of investigational acellular pertussis (aP) and reduced tetanus-diphtheria-acellular pertussis (TdaP) booster vaccines in adults.

  • Geert Leroux-Roels‎ et al.
  • Human vaccines & immunotherapeutics‎
  • 2018‎

Despite high vaccination coverage worldwide, pertussis has re-emerged in many countries. This randomized, controlled, observer-blind phase I study and extension study in Belgium (March 2012-June 2015) assessed safety and immunogenicity of investigational acellular pertussis vaccines containing genetically detoxified pertussis toxin (PT) (NCT01529645; NCT02382913). 420 healthy adults (average age: 26.8 ± 5.5 years, 60% female) were randomized to 1 of 10 vaccine groups: 3 investigational aP vaccines (containing pertussis antigens PT, filamentous hemagglutinin [FHA] and pertactin [PRN] at different dosages), 6 investigational TdaP (additionally containing tetanus toxoid [TT] and diphtheria toxoid [DT]), and 1 TdaP comparator containing chemically inactivated PT. Antibody responses were evaluated on days 1, 8, 30, 180, 365, and approximately 3 years post-booster vaccination. Cell-mediated immune responses and PT neutralization were evaluated in a subset of participants in pre-selected groups. Local and systemic adverse events (AEs), and unsolicited AEs were collected through day 7 and 30, respectively; serious AEs and AEs leading to study withdrawal were collected through day 365 post-vaccination. Antibody responses against pertussis antigens peaked at day 30 post-vaccination and then declined but remained above baseline level at approximately 3 years post-vaccination. Responses to FHA and PRN were correlated to antigen dose. Antibody responses specific to PT, toxin neutralization activity and persistence induced by investigational formulations were similar or significantly higher than the licensed vaccine, despite lower PT doses. Of 15 serious AEs, none were considered vaccination-related; 1 led to study withdrawal (premature labor, day 364; aP4 group). This study confirmed the potential benefits of genetically detoxified PT antigen. All investigational study formulations were well tolerated.


Dataset of antibody variable region sequence features inferred from a respiratory syncytial virus fusion protein-specific B cell receptor repertoire induced by natural infection of a healthy adult.

  • Gerald Schneikart‎ et al.
  • Data in brief‎
  • 2020‎

Respiratory syncytial virus (RSV) is the primary cause for acute lower respiratory syndrome in children younger than 5 years. Research on B cell repertoires and antibodies binding the RSV fusion protein (RSV F) is of major interest in the development of potential vaccine candidates and therapies. B cell receptors (BCRs) which have higher affinities for a specific antigen are preferentially selected for B cell clonal expansion in germinal center reactions. Consequently, antigen-specific BCR repertoires share common features, as for instance preferential variable gene usage, variable region mutation levels or lengths of the heavy chain complementarity-determining region 3. Since RSV repeatedly infects every person throughout life, memory B cells (MBC) expressing RSV F-binding BCRs circulate in the blood of healthy adults. This dataset of BCR variable region sequence features was derived from single cell-sorted RSV F-directed MBCs of a healthy adult blood donor [1]. The dataset was produced with publicly available data analysis software programs and scripts, which facilitates integration or comparison with antibody sequence repertoire data of different individuals derived with the same or comparable data analysis approaches and tools.


Serotype IV Streptococcus agalactiae ST-452 has arisen from large genomic recombination events between CC23 and the hypervirulent CC17 lineages.

  • Edmondo Campisi‎ et al.
  • Scientific reports‎
  • 2016‎

Streptococcus agalactiae (Group B Streptococcus, GBS) causes life-threatening infections in newborns and adults with chronic medical conditions. Serotype IV strains are emerging both among carriers and as cause of invasive disease and recent studies revealed two main Sequence Types (STs), ST-452 and ST-459 assigned to Clonal Complexes CC23 and CC1, respectively. Whole genome sequencing of 70 type IV GBS and subsequent phylogenetic analysis elucidated the localization of type IV isolates in a SNP-based phylogenetic tree and suggested that ST-452 could have originated through genetic recombination. SNPs density analysis of the core genome confirmed that the founder strain of this lineage originated from a single large horizontal gene transfer event between CC23 and the hypervirulent CC17. Indeed, ST-452 genomes are composed by two parts that are nearly identical to corresponding regions in ST-24 (CC23) and ST-291 (CC17). Chromosome mapping of the major GBS virulence factors showed that ST-452 strains have an intermediate yet unique profile among CC23 and CC17 strains. We described unreported large recombination events, involving the cps IV operon and resulting in the expansion of serotype IV to CC23. This work sheds further light on the evolution of GBS providing new insights on the recent emergence of serotype IV.


Dual RNA-seq of Nontypeable Haemophilus influenzae and Host Cell Transcriptomes Reveals Novel Insights into Host-Pathogen Cross Talk.

  • Buket Baddal‎ et al.
  • mBio‎
  • 2015‎

The ability to adhere and adapt to the human respiratory tract mucosa plays a pivotal role in the pathogenic lifestyle of nontypeable Haemophilus influenzae (NTHi). However, the temporal events associated with a successful colonization have not been fully characterized. In this study, by reconstituting the ciliated human bronchial epithelium in vitro, we monitored the global transcriptional changes in NTHi and infected mucosal epithelium simultaneously for up to 72 h by dual RNA sequencing. The initial stage of colonization was characterized by the binding of NTHi to ciliated cells. Temporal profiling of host mRNA signatures revealed significant dysregulation of the target cell cytoskeleton elicited by bacterial infection, with a profound effect on the intermediate filament network and junctional complexes. In response to environmental stimuli of the host epithelium, NTHi downregulated its central metabolism and increased the expression of transporters, indicating a change in the metabolic regime due to the availability of host substrates. Concurrently, the oxidative environment generated by infected cells instigated bacterial expression of stress-induced defense mechanisms, including the transport of exogenous glutathione and activation of the toxin-antitoxin system. The results of this analysis were validated by those of confocal microscopy, Western blotting, Bio-plex, and real-time quantitative reverse transcription-PCR (qRT-PCR). Notably, as part of our screening for novel signatures of infection, we identified a global profile of noncoding transcripts that are candidate small RNAs (sRNAs) regulated during human host infection in Haemophilus species. Our data, by providing a robust and comprehensive representation of the cross talk between the host and invading pathogen, provides important insights into NTHi pathogenesis and the development of efficacious preventive strategies.


Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro.

  • Erika Bartolini‎ et al.
  • Journal of extracellular vesicles‎
  • 2013‎

Outer membrane vesicles (OMVs) are spheroid particles released by all Gram-negative bacteria as a result of the budding out of the outer membrane. Since they carry many of the bacterial surface-associated proteins and feature a potent built-in adjuvanticity, OMVs are being utilized as vaccines, some of which commercially available. Recently, methods for manipulating the protein content of OMVs have been proposed, thus making OMVs a promising platform for recombinant, multivalent vaccines development.


The respiratory syncytial virus (RSV) prefusion F-protein functional antibody repertoire in adult healthy donors.

  • Emanuele Andreano‎ et al.
  • EMBO molecular medicine‎
  • 2021‎

Respiratory syncytial virus (RSV) is the leading cause of death from lower respiratory tract infection in infants and children, and is responsible for considerable morbidity and mortality in older adults. Vaccines for pregnant women and elderly which are in phase III clinical studies target people with pre-existing natural immunity against RSV. To investigate the background immunity which will be impacted by vaccination, we single cell-sorted human memory B cells and dissected functional and genetic features of neutralizing antibodies (nAbs) induced by natural infection. Most nAbs recognized both the prefusion and postfusion conformations of the RSV F-protein (cross-binders) while a smaller fraction bound exclusively to the prefusion conformation. Cross-binder nAbs used a wide array of gene rearrangements, while preF-binder nAbs derived mostly from the expansion of B-cell clonotypes from the IGHV1 germline. This latter class of nAbs recognizes an epitope located between Site Ø, Site II, and Site V on the F-protein, identifying an important site of pathogen vulnerability.


Optimized fluorescent labeling to identify memory B cells specific for Neisseria meningitidis serogroup B vaccine antigens ex vivo.

  • Nitya Nair‎ et al.
  • Immunity, inflammation and disease‎
  • 2013‎

Antigen-specific memory B cells generate anamnestic responses and high affinity antibodies upon re-exposure to pathogens. Attempts to isolate rare antigen-specific memory B cells for in-depth functional analysis at the single-cell level have been hindered by the lack of tools with adequate sensitivity. We applied two independent methods of protein labeling to sensitive and specific ex vivo identification of antigen-specific memory B cells by flow cytometry: stringently controlled amine labeling, and sortagging, a novel method whereby a single nucleophilic fluorochrome molecule is added onto an LPETG motif carried by the target protein. We show that sortagged NadA, a major antigen in the meningococcal serogroup B vaccine, identifies NadA-specific memory B cells with high sensitivity and specificity, comparable to NadA amine-labeled under stringent reaction parameters in a mouse model of vaccination. We distinguish NadA-specific switched MBC induced by vaccination from the background signal contributed by splenic transitional and marginal zone B cells. In conclusion, we demonstrate that protein structural data coupled with sortag technology allows the development of engineered antigens that are as sensitive and specific as conventional chemically labeled antigens in detecting rare MBC, and minimize the possibility of disrupting conformational B cell epitopes.


Cocrystal structure of meningococcal factor H binding protein variant 3 reveals a new crossprotective epitope recognized by human mAb 1E6.

  • Federica Bianchi‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2019‎

The 4 component meningococcus B vaccine (4CMenB) vaccine is the first vaccine containing recombinant proteins licensed for the prevention of invasive meningococcal disease caused by meningococcal serogroup B strains. 4CMenB contains 3 main recombinant proteins, including the Neisseria meningitidis factor H binding protein (fHbp), a lipoprotein able to bind the human factor H. To date, over 1000 aa sequences of fHbp have been identified, and they can be divided into variant groups 1, 2, and 3, which are usually not crossprotective. Nevertheless, previous characterizations of a small set (n = 10) of mAbs generated in humans after 4CMenB immunization revealed 2 human Fabs (huFabs) (1A12, 1G3) with some crossreactivity for variants 1, 2, and 3. This unexpected result prompted us to examine a much larger set of human mAbs (n = 110), with the aim of better understanding the extent and nature of crossreactive anti-fHbp antibodies. In this study, we report an analysis of the human antibody response to fHbp, by the characterization of 110 huFabs collected from 3 adult vaccinees during a 6-mo study. Although the 4CMenB vaccine contains fHbp variant 1, 13 huFabs were also found to be crossreactive with variants 2 and 3. The crystal structure of the crossreactive huFab 1E6 in complex with fHbp variant 3 was determined, revealing a novel, highly conserved epitope distinct from the epitopes recognized by 1A12 or 1G3. Further, functional characterization shows that human mAb 1E6 is able to elicit rabbit, but not human, complement-mediated bactericidal activity against meningococci displaying fHbp from any of the 3 different variant groups. This functional and structural information about the human antibody response upon 4CMenB immunization contributes to further unraveling the immunogenic properties of fHbp. Knowledge gained about the epitope profile recognized by the human antibody repertoire could guide future vaccine design.-Bianchi, F., Veggi, D., Santini, L., Buricchi, F., Bartolini, E., Lo Surdo, P., Martinelli, M., Finco, O., Masignani, V., Bottomley, M. J., Maione, D., Cozzi, R. Cocrystal structure of meningococcal factor H binding protein variant 3 reveals a new crossprotective epitope recognized by human mAb 1E6.


Paediatric obstructive sleep apnoea syndrome (OSAS) is associated with tonsil colonisation by Streptococcus pyogenes.

  • Elisa Viciani‎ et al.
  • Scientific reports‎
  • 2016‎

The involvement of pathogenic bacteria in obstructive sleep apnoea syndrome (OSAS) has yet to be elucidated. We investigated the possible role of group A streptococcus (GAS) in OSAS pathogenesis. In 40 tonsillectomized patients affected by OSAS and 80 healthy controls, significant (p < 0.0001) association of GAS with paediatric OSAS was found. Supernatant from streptolysin O (SLO)-producing GAS induced production of cysteinyl leukotrienes (CysLTs) in tonsil mononuclear cells (TMCs). CysLTs-treated TMCs showed significant (p < 0.05) proliferation of CD4+ T, CD19+ and CD19+CD27+CD38+ B lymphocytes. We discovered a SLO-dependent activation of CysLTs production through a pathway involving TOLL-like receptor 4 (TLR4), TIR-domain-containing adapter-inducing interferon-β (TRIF), Myeloid differentiation primary response gene 88 (MyD88), and p38 MAP Kinase. In conclusion, we hypothesise that GAS may contribute to paediatric tonsillar hyperplasia through CysLTs production induced by SLO, and this might explain its association with OSAS.


In-silico prediction and deep-DNA sequencing validation indicate phase variation in 115 Neisseria meningitidis genes.

  • Emilio Siena‎ et al.
  • BMC genomics‎
  • 2016‎

The Neisseria meningitidis (Nm) chromosome shows a high abundance of simple sequence DNA repeats (SSRs) that undergo stochastic, reversible mutations at high frequency. This mechanism is reflected in an extensive phenotypic diversity that facilitates Nm adaptation to dynamic environmental changes. To date, phase-variable phenotypes mediated by SSRs variation have been experimentally confirmed for 26 Nm genes.


Safety Profile and Immunologic Responses of a Novel Vaccine Against Shigella sonnei Administered Intramuscularly, Intradermally and Intranasally: Results From Two Parallel Randomized Phase 1 Clinical Studies in Healthy Adult Volunteers in Europe.

  • Odile Launay‎ et al.
  • EBioMedicine‎
  • 2017‎

Approximately 164,000 deaths yearly are due to shigellosis, primarily in developing countries. Thus, a safe and affordable Shigella vaccine is an important public health priority. The GSK Vaccines Institute for Global Health (GVGH) developed a candidate Shigella sonnei vaccine (1790GAHB) using the Generalized Modules for Membrane Antigens (GMMA) technology. The paper reports results of 1790GAHB Phase 1 studies in healthy European adults.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: