Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 28 papers

Inconsistent results in the analysis of ALK rearrangements in non-small cell lung cancer.

  • Johanna S M Mattsson‎ et al.
  • BMC cancer‎
  • 2016‎

Identification of targetable EML4-ALK fusion proteins has revolutionized the treatment of a minor subgroup of non-small cell lung cancer (NSCLC) patients. Although fluorescence in situ hybridization (FISH) is regarded as the gold standard for detection of ALK rearrangements, ALK immunohistochemistry (IHC) is often used as screening tool in clinical practice. In order to unbiasedly analyze the diagnostic impact of such a screening strategy, we compared ALK IHC with ALK FISH in three large representative Swedish NSCLC cohorts incorporating clinical parameters and gene expression data.


Expression of human skin-specific genes defined by transcriptomics and antibody-based profiling.

  • Per-Henrik D Edqvist‎ et al.
  • The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society‎
  • 2015‎

To increase our understanding of skin, it is important to define the molecular constituents of the cell types and epidermal layers that signify normal skin. We have combined a genome-wide transcriptomics analysis, using deep sequencing of mRNA from skin biopsies, with immunohistochemistry-based protein profiling to characterize the landscape of gene and protein expression in normal human skin. The transcriptomics and protein expression data of skin were compared to 26 (RNA) and 44 (protein) other normal tissue types. All 20,050 putative protein-coding genes were classified into categories based on patterns of expression. We found that 417 genes showed elevated expression in skin, with 106 genes expressed at least five-fold higher than that in other tissues. The 106 genes categorized as skin enriched encoded for well-known proteins involved in epidermal differentiation and proteins with unknown functions and expression patterns in skin, including the C1orf68 protein, which showed the highest relative enrichment in skin. In conclusion, we have applied a genome-wide analysis to identify the human skin-specific proteome and map the precise localization of the corresponding proteins in different compartments of the skin, to facilitate further functional studies to explore the molecular repertoire of normal skin and to identify biomarkers related to various skin diseases.


Prognostic impact of COX-2 in non-small cell lung cancer: a comprehensive compartment-specific evaluation of tumor and stromal cell expression.

  • Johanna S M Mattsson‎ et al.
  • Cancer letters‎
  • 2015‎

Cyclooxygenase-2 (COX-2) is an enzyme that has been extensively investigated as a prognostic marker in cancer. In non-small cell lung cancer (NSCLC) previous results regarding the prognostic impact of COX-2 expression are inconsistent. Therefore we evaluated the association between transcript levels and overall survival in nine publicly available gene expression data sets (total n = 1337) and determined in situ compartment-specific tumor and stromal cell protein expression in two independent cohorts (n = 616). Gene expression did not show any correlation with clinical parameters or with overall survival. Protein expression in tumor and stromal cells did not correlate with any clinical parameter or with overall survival in one of the analyzed cohorts, while a significant association of high stromal expression with longer survival was observed in both univariate and multivariate analysis in the other cohort. Stromal expression of COX-2 has not been separately evaluated in NSCLC previously and may be a subject of further investigation, whereas the presented findings from this comprehensive compartment specific evaluation clearly reject the hypothesis of COX-2 tumor cell expression having a prognostic value in NSCLC.


Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α.

  • Denisse Sepulveda‎ et al.
  • Molecular cell‎
  • 2018‎

Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR.


Classification of Developmental Toxicants in a Human iPSC Transcriptomics-Based Test.

  • Anna Cherianidou‎ et al.
  • Chemical research in toxicology‎
  • 2022‎

Despite the progress made in developmental toxicology, there is a great need for in vitro tests that identify developmental toxicants in relation to human oral doses and blood concentrations. In the present study, we established the hiPSC-based UKK2 in vitro test and analyzed genome-wide expression profiles of 23 known teratogens and 16 non-teratogens. Compounds were analyzed at the maximal plasma concentration (Cmax) and at 20-fold Cmax for a 24 h incubation period in three independent experiments. Based on the 1000 probe sets with the highest variance and including information on cytotoxicity, penalized logistic regression with leave-one-out cross-validation was used to classify the compounds as test-positive or test-negative, reaching an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.96, 0.92, 0.96, and 0.88, respectively. Omitting the cytotoxicity information reduced the test performance to an AUC of 0.94, an accuracy of 0.79, and a sensitivity of 0.74. A second method, which used the number of significantly deregulated probe sets to classify the compounds, resulted in a specificity of 1; however, the AUC (0.90), accuracy (0.90), and sensitivity (0.83) were inferior compared to those of the logistic regression-based procedure. Finally, no increased performance was achieved when the high test concentrations (20-fold Cmax) were used, in comparison to testing within the realistic clinical range (1-fold Cmax). In conclusion, although further optimization is required, for example, by including additional readouts and cell systems that model different developmental processes, the UKK2-test in its present form can support the early discovery-phase detection of human developmental toxicants.


Recombinant Laminins Drive the Differentiation and Self-Organization of hESC-Derived Hepatocytes.

  • Kate Cameron‎ et al.
  • Stem cell reports‎
  • 2015‎

Stem cell-derived somatic cells represent an unlimited resource for basic and translational science. Although promising, there are significant hurdles that must be overcome. Our focus is on the generation of the major cell type of the human liver, the hepatocyte. Current protocols produce variable populations of hepatocytes that are the product of using undefined components in the differentiation process. This serves as a significant barrier to scale-up and application. To tackle this issue, we designed a defined differentiation process using recombinant laminin substrates to provide instruction. We demonstrate efficient hepatocyte specification, cell organization, and significant improvements in cell function and phenotype. This is driven in part by the suppression of unfavorable gene regulatory networks that control cell proliferation and migration, pluripotent stem cell self-renewal, and fibroblast and colon specification. We believe that this represents a significant advance, moving stem cell-based hepatocytes closer toward biomedical application.


Quantification of normal cell fraction and copy number neutral LOH in clinical lung cancer samples using SNP array data.

  • Hanna Göransson‎ et al.
  • PloS one‎
  • 2009‎

Technologies based on DNA microarrays have the potential to provide detailed information on genomic aberrations in tumor cells. In practice a major obstacle for quantitative detection of aberrations is the heterogeneity of clinical tumor tissue. Since tumor tissue invariably contains genetically normal stromal cells, this may lead to a failure to detect aberrations in the tumor cells.


Gene networks and transcription factor motifs defining the differentiation of stem cells into hepatocyte-like cells.

  • Patricio Godoy‎ et al.
  • Journal of hepatology‎
  • 2015‎

The differentiation of stem cells to hepatocyte-like cells (HLC) offers the perspective of unlimited supply of human hepatocytes. However, the degree of differentiation of HLC remains controversial. To obtain an unbiased characterization, we performed a transcriptomic study with HLC derived from human embryonic and induced stem cells (ESC, hiPSC) from three different laboratories.


Epigenomic and transcriptional profiling identifies impaired glyoxylate detoxification in NAFLD as a risk factor for hyperoxaluria.

  • Kathrin Gianmoena‎ et al.
  • Cell reports‎
  • 2021‎

Epigenetic modifications (e.g. DNA methylation) in NAFLD and their contribution to disease progression and extrahepatic complications are poorly explored. Here, we use an integrated epigenome and transcriptome analysis of mouse NAFLD hepatocytes and identify alterations in glyoxylate metabolism, a pathway relevant in kidney damage via oxalate release-a harmful waste product and kidney stone-promoting factor. Downregulation and hypermethylation of alanine-glyoxylate aminotransferase (Agxt), which detoxifies glyoxylate, preventing excessive oxalate accumulation, is accompanied by increased oxalate formation after metabolism of the precursor hydroxyproline. Viral-mediated Agxt transfer or inhibiting hydroxyproline catabolism rescues excessive oxalate release. In human steatotic hepatocytes, AGXT is also downregulated and hypermethylated, and in NAFLD adolescents, steatosis severity correlates with urinary oxalate excretion. Thus, this work identifies a reduced capacity of the steatotic liver to detoxify glyoxylate, triggering elevated oxalate, and provides a mechanistic explanation for the increased risk of kidney stones and chronic kidney disease in NAFLD patients.


Transcriptomic Cross-Species Analysis of Chronic Liver Disease Reveals Consistent Regulation Between Humans and Mice.

  • Christian H Holland‎ et al.
  • Hepatology communications‎
  • 2022‎

Mouse models are frequently used to study chronic liver diseases (CLDs). To assess their translational relevance, we quantified the similarity of commonly used mouse models to human CLDs based on transcriptome data. Gene-expression data from 372 patients were compared with data from acute and chronic mouse models consisting of 227 mice, and additionally to nine published gene sets of chronic mouse models. Genes consistently altered in humans and mice were mapped to liver cell types based on single-cell RNA-sequencing data and validated by immunostaining. Considering the top differentially expressed genes, the similarity between humans and mice varied among the mouse models and depended on the period of damage induction. The highest recall (0.4) and precision (0.33) were observed for the model with 12-months damage induction by CCl4 and by a Western diet, respectively. Genes consistently up-regulated between the chronic CCl4 model and human CLDs were enriched in inflammatory and developmental processes, and mostly mapped to cholangiocytes, macrophages, and endothelial and mesenchymal cells. Down-regulated genes were enriched in metabolic processes and mapped to hepatocytes. Immunostaining confirmed the regulation of selected genes and their cell type specificity. Genes that were up-regulated in both acute and chronic models showed higher recall and precision with respect to human CLDs than exclusively acute or chronic genes. Conclusion: Similarly regulated genes in human and mouse CLDs were identified. Despite major interspecies differences, mouse models detected 40% of the genes significantly altered in human CLD. The translational relevance of individual genes can be assessed at https://saezlab.shinyapps.io/liverdiseaseatlas/.


Colitis ameliorates cholestatic liver disease via suppression of bile acid synthesis.

  • Wenfang Gui‎ et al.
  • Nature communications‎
  • 2023‎

Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by chronic inflammation and progressive fibrosis of the biliary tree. The majority of PSC patients suffer from concomitant inflammatory bowel disease (IBD), which has been suggested to promote disease development and progression. However, the molecular mechanisms by which intestinal inflammation may aggravate cholestatic liver disease remain incompletely understood. Here, we employ an IBD-PSC mouse model to investigate the impact of colitis on bile acid metabolism and cholestatic liver injury. Unexpectedly, intestinal inflammation and barrier impairment improve acute cholestatic liver injury and result in reduced liver fibrosis in a chronic colitis model. This phenotype is independent of colitis-induced alterations of microbial bile acid metabolism but mediated via hepatocellular NF-κB activation by lipopolysaccharide (LPS), which suppresses bile acid metabolism in-vitro and in-vivo. This study identifies a colitis-triggered protective circuit suppressing cholestatic liver disease and encourages multi-organ treatment strategies for PSC.


LIPG-promoted lipid storage mediates adaptation to oxidative stress in breast cancer.

  • Cristina Cadenas‎ et al.
  • International journal of cancer‎
  • 2019‎

Endothelial lipase (LIPG) is a cell surface associated lipase that displays phospholipase A1 activity towards phosphatidylcholine present in high-density lipoproteins (HDL). LIPG was recently reported to be expressed in breast cancer and to support proliferation, tumourigenicity and metastasis. Here we show that severe oxidative stress leading to AMPK activation triggers LIPG upregulation, resulting in intracellular lipid droplet accumulation in breast cancer cells, which supports survival. Neutralizing oxidative stress abrogated LIPG upregulation and the concomitant lipid storage. In human breast cancer, high LIPG expression was observed in a limited subset of tumours and was significantly associated with shorter metastasis-free survival in node-negative, untreated patients. Moreover, expression of PLIN2 and TXNRD1 in these tumours indicated a link to lipid storage and oxidative stress. Altogether, our findings reveal a previously unrecognized role for LIPG in enabling oxidative stress-induced lipid droplet accumulation in tumour cells that protects against oxidative stress, and thus supports tumour progression.


1p36 deletion is a marker for tumour dissemination in microsatellite stable stage II-III colon cancer.

  • Markus Mayrhofer‎ et al.
  • BMC cancer‎
  • 2014‎

The clinical behaviour of colon cancer is heterogeneous. Five-year overall survival is 50-65% with all stages included. Recurring somatic chromosomal alterations have been identified and some have shown potential as markers for dissemination of the tumour, which is responsible for most colon cancer deaths. We investigated 115 selected stage II-IV primary colon cancers for associations between chromosomal alterations and tumour dissemination.


The transcriptomic and proteomic landscapes of bone marrow and secondary lymphoid tissues.

  • Sandra Andersson‎ et al.
  • PloS one‎
  • 2014‎

The sequencing of the human genome has opened doors for global gene expression profiling, and the immense amount of data will lay an important ground for future studies of normal and diseased tissues. The Human Protein Atlas project aims to systematically map the human gene and protein expression landscape in a multitude of normal healthy tissues as well as cancers, enabling the characterization of both housekeeping genes and genes that display a tissue-specific expression pattern. This article focuses on identifying and describing genes with an elevated expression in four lymphohematopoietic tissue types (bone marrow, lymph node, spleen and appendix), based on the Human Protein Atlas-strategy that combines high throughput transcriptomics with affinity-based proteomics.


The kidney transcriptome and proteome defined by transcriptomics and antibody-based profiling.

  • Masato Habuka‎ et al.
  • PloS one‎
  • 2014‎

To understand renal functions and disease, it is important to define the molecular constituents of the various compartments of the kidney. Here, we used comparative transcriptomic analysis of all major organs and tissues in the human body, in combination with kidney tissue micro array based immunohistochemistry, to generate a comprehensive description of the kidney-specific transcriptome and proteome. A special emphasis was placed on the identification of genes and proteins that were elevated in specific kidney subcompartments. Our analysis identified close to 400 genes that had elevated expression in the kidney, as compared to the other analysed tissues, and these were further subdivided, depending on expression levels, into tissue enriched, group enriched or tissue enhanced. Immunohistochemistry allowed us to identify proteins with distinct localisation to the glomeruli (n = 11), proximal tubules (n = 120), distal tubules (n = 9) or collecting ducts (n = 8). Among the identified kidney elevated transcripts, we found several proteins not previously characterised or identified as elevated in kidney. This description of the kidney specific transcriptome and proteome provides a resource for basic and clinical research to facilitate studies to understand kidney biology and disease.


Integrative analysis of genome-wide gene copy number changes and gene expression in non-small cell lung cancer.

  • Verena Jabs‎ et al.
  • PloS one‎
  • 2017‎

Non-small cell lung cancer (NSCLC) represents a genomically unstable cancer type with extensive copy number aberrations. The relationship of gene copy number alterations and subsequent mRNA levels has only fragmentarily been described. The aim of this study was to conduct a genome-wide analysis of gene copy number gains and corresponding gene expression levels in a clinically well annotated NSCLC patient cohort (n = 190) and their association with survival. While more than half of all analyzed gene copy number-gene expression pairs showed statistically significant correlations (10,296 of 18,756 genes), high correlations, with a correlation coefficient >0.7, were obtained only in a subset of 301 genes (1.6%), including KRAS, EGFR and MDM2. Higher correlation coefficients were associated with higher copy number and expression levels. Strong correlations were frequently based on few tumors with high copy number gains and correspondingly increased mRNA expression. Among the highly correlating genes, GO groups associated with posttranslational protein modifications were particularly frequent, including ubiquitination and neddylation. In a meta-analysis including 1,779 patients we found that survival associated genes were overrepresented among highly correlating genes (61 of the 301 highly correlating genes, FDR adjusted p<0.05). Among them are the chaperone CCT2, the core complex protein NUP107 and the ubiquitination and neddylation associated protein CAND1. In conclusion, in a comprehensive analysis we described a distinct set of highly correlating genes. These genes were found to be overrepresented among survival-associated genes based on gene expression in a large collection of publicly available datasets.


Inhibiting the glycerophosphodiesterase EDI3 in ER-HER2+ breast cancer cells resistant to HER2-targeted therapy reduces viability and tumour growth.

  • Magdalena Keller‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2023‎

Intrinsic or acquired resistance to HER2-targeted therapy is often a problem when small molecule tyrosine kinase inhibitors or antibodies are used to treat patients with HER2 positive breast cancer. Therefore, the identification of new targets and therapies for this patient group is warranted. Activated choline metabolism, characterized by elevated levels of choline-containing compounds, has been previously reported in breast cancer. The glycerophosphodiesterase EDI3 (GPCPD1), which hydrolyses glycerophosphocholine to choline and glycerol-3-phosphate, directly influences choline and phospholipid metabolism, and has been linked to cancer-relevant phenotypes in vitro. While the importance of choline metabolism has been addressed in breast cancer, the role of EDI3 in this cancer type has not been explored.


Spatio-Temporal Multiscale Analysis of Western Diet-Fed Mice Reveals a Translationally Relevant Sequence of Events during NAFLD Progression.

  • Ahmed Ghallab‎ et al.
  • Cells‎
  • 2021‎

Mouse models of non-alcoholic fatty liver disease (NAFLD) are required to define therapeutic targets, but detailed time-resolved studies to establish a sequence of events are lacking. Here, we fed male C57Bl/6N mice a Western or standard diet over 48 weeks. Multiscale time-resolved characterization was performed using RNA-seq, histopathology, immunohistochemistry, intravital imaging, and blood chemistry; the results were compared to human disease. Acetaminophen toxicity and ammonia metabolism were additionally analyzed as functional readouts. We identified a sequence of eight key events: formation of lipid droplets; inflammatory foci; lipogranulomas; zonal reorganization; cell death and replacement proliferation; ductular reaction; fibrogenesis; and hepatocellular cancer. Functional changes included resistance to acetaminophen and altered nitrogen metabolism. The transcriptomic landscape was characterized by two large clusters of monotonously increasing or decreasing genes, and a smaller number of 'rest-and-jump genes' that initially remained unaltered but became differentially expressed only at week 12 or later. Approximately 30% of the genes altered in human NAFLD are also altered in the present mouse model and an increasing overlap with genes altered in human HCC occurred at weeks 30-48. In conclusion, the observed sequence of events recapitulates many features of human disease and offers a basis for the identification of therapeutic targets.


The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling.

  • Erna Raja‎ et al.
  • Oncotarget‎
  • 2016‎

The protein kinase LKB1 regulates cell metabolism and growth and is implicated in intestinal and lung cancer. Bone morphogenetic protein (BMP) signaling regulates cell differentiation during development and tissue homeostasis. We demonstrate that LKB1 physically interacts with BMP type I receptors and requires Smad7 to promote downregulation of the receptor. Accordingly, LKB1 suppresses BMP-induced osteoblast differentiation and affects BMP signaling in Drosophila wing longitudinal vein morphogenesis. LKB1 protein expression and Smad1 phosphorylation analysis in a cohort of non-small cell lung cancer patients demonstrated a negative correlation predominantly in a subset enriched in adenocarcinomas. Lung cancer patient data analysis indicated strong correlation between LKB1 loss-of-function mutations and high BMP2 expression, and these two events further correlated with expression of a gene subset functionally linked to apoptosis and migration. This new mechanism of BMP receptor regulation by LKB1 has ramifications in physiological organogenesis and disease.


RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer.

  • Shuan Rao‎ et al.
  • Genes & development‎
  • 2017‎

Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRasG12D in mouse lung epithelial cells markedly impairs the progression of KRasG12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRasG12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: