Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Cab45 is required for Ca(2+)-dependent secretory cargo sorting at the trans-Golgi network.

  • Julia von Blume‎ et al.
  • The Journal of cell biology‎
  • 2012‎

Ca(2+) import into the lumen of the trans-Golgi network (TGN) by the secretory pathway calcium ATPase1 (SPCA1) is required for the sorting of secretory cargo. How is Ca(2+) retained in the lumen of the Golgi, and what is its role in cargo sorting? We show here that a soluble, lumenal Golgi resident protein, Cab45, is required for SPCA1-dependent Ca(2+) import into the TGN; it binds secretory cargo in a Ca(2+)-dependent reaction and is required for its sorting at the TGN.


Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α.

  • Denisse Sepulveda‎ et al.
  • Molecular cell‎
  • 2018‎

Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR.


Control of lysosomal-mediated cell death by the pH-dependent calcium channel RECS1.

  • Philippe Pihán‎ et al.
  • Science advances‎
  • 2021‎

Programmed cell death is regulated by the balance between activating and inhibitory signals. Here, we have identified RECS1 (responsive to centrifugal force and shear stress 1) [also known as TMBIM1 (transmembrane BAX inhibitor motif containing 1)] as a proapoptotic member of the TMBIM family. In contrast to other proteins of the TMBIM family, RECS1 expression induces cell death through the canonical mitochondrial apoptosis pathway. Unbiased screening indicated that RECS1 sensitizes cells to lysosomal perturbations. RECS1 localizes to lysosomes, where it regulates their acidification and calcium content, triggering lysosomal membrane permeabilization. Structural modeling and electrophysiological studies indicated that RECS1 is a pH-regulated calcium channel, an activity that is essential to trigger cell death. RECS1 also sensitizes whole animals to stress in vivo in Drosophila melanogaster and zebrafish models. Our results unveil an unanticipated function for RECS1 as a proapoptotic component of the TMBIM family that ignites cell death programs at lysosomes.


The ER stress sensor IRE1 interacts with STIM1 to promote store-operated calcium entry, T cell activation, and muscular differentiation.

  • Amado Carreras-Sureda‎ et al.
  • Cell reports‎
  • 2023‎

Store-operated Ca2+ entry (SOCE) mediated by stromal interacting molecule (STIM)-gated ORAI channels at endoplasmic reticulum (ER) and plasma membrane (PM) contact sites maintains adequate levels of Ca2+ within the ER lumen during Ca2+ signaling. Disruption of ER Ca2+ homeostasis activates the unfolded protein response (UPR) to restore proteostasis. Here, we report that the UPR transducer inositol-requiring enzyme 1 (IRE1) interacts with STIM1, promotes ER-PM contact sites, and enhances SOCE. IRE1 deficiency reduces T cell activation and human myoblast differentiation. In turn, STIM1 deficiency reduces IRE1 signaling after store depletion. Using a CaMPARI2-based Ca2+ genome-wide screen, we identify CAMKG2 and slc105a as SOCE enhancers during ER stress. Our findings unveil a direct crosstalk between SOCE and UPR via IRE1, acting as key regulator of ER Ca2+ and proteostasis in T cells and muscles. Under ER stress, this IRE1-STIM1 axis boosts SOCE to preserve immune cell functions, a pathway that could be targeted for cancer immunotherapy.


Modulating innate immunity improves hepatitis C virus infection and replication in stem cell-derived hepatocytes.

  • Xiaoling Zhou‎ et al.
  • Stem cell reports‎
  • 2014‎

In this study, human embryonic stem cell-derived hepatocytes (hESC-Heps) were investigated for their ability to support hepatitis C virus (HCV) infection and replication. hESC-Heps were capable of supporting the full viral life cycle, including the release of infectious virions. Although supportive, hESC-Hep viral infection levels were not as great as those observed in Huh7 cells. We reasoned that innate immune responses in hESC-Heps may lead to the low level of infection and replication. Upon further investigation, we identified a strong type III interferon response in hESC-Heps that was triggered by HCV. Interestingly, specific inhibition of the JAK/STAT signaling pathway led to an increase in HCV infection and replication in hESC-Heps. Of note, the interferon response was not evident in Huh7 cells. In summary, we have established a robust cell-based system that allows the in-depth study of virus-host interactions in vitro.


Recombinant Laminins Drive the Differentiation and Self-Organization of hESC-Derived Hepatocytes.

  • Kate Cameron‎ et al.
  • Stem cell reports‎
  • 2015‎

Stem cell-derived somatic cells represent an unlimited resource for basic and translational science. Although promising, there are significant hurdles that must be overcome. Our focus is on the generation of the major cell type of the human liver, the hepatocyte. Current protocols produce variable populations of hepatocytes that are the product of using undefined components in the differentiation process. This serves as a significant barrier to scale-up and application. To tackle this issue, we designed a defined differentiation process using recombinant laminin substrates to provide instruction. We demonstrate efficient hepatocyte specification, cell organization, and significant improvements in cell function and phenotype. This is driven in part by the suppression of unfavorable gene regulatory networks that control cell proliferation and migration, pluripotent stem cell self-renewal, and fibroblast and colon specification. We believe that this represents a significant advance, moving stem cell-based hepatocytes closer toward biomedical application.


Modelling foetal exposure to maternal smoking using hepatoblasts from pluripotent stem cells.

  • Baltasar Lucendo-Villarin‎ et al.
  • Archives of toxicology‎
  • 2017‎

The liver is a dynamic organ which is both multifunctional and highly regenerative. A major role of the liver is to process both endo and xenobiotics. Cigarettes are an example of a legal and widely used drug which can cause major health problems for adults and constitute a particular risk to the foetus, if the mother smokes during pregnancy. Cigarette smoke contains a complex mixture of thousands of different xenobiotics, including nicotine and polycyclic aromatic hydrocarbons. These affect foetal development in a sex-specific manner, inducing sex-dependant molecular responses in different organs. To date, the effect of maternal smoking on the foetal liver has been studied in vitro using cell lines, primary tissue and animal models. While these models have proven to be useful, poor cell phenotype, tissue scarcity, batch-to-batch variation and species differences have led to difficulties in data extrapolation toward human development. Therefore, in this study we have employed hepatoblasts, derived from pluripotent stem cells, to model the effects of xenobiotics from cigarette smoke on human hepatocyte development. Highly pure hepatocyte populations (>90%) were produced in vitro and exposed to factors present in cigarette smoke. Analysis of ATP levels revealed that, independent of the sex, the majority of smoking derivatives tested individually did not deplete ATP levels below 50%. However, following exposure to a cocktail of smoking derivatives, ATP production fell below 50% in a sex-dependent manner. This was paralleled by a loss metabolic activity and secretory ability in both female and male hepatocytes. Interestingly, cell depletion was less pronounced in female hepatocytes, whereas caspase activation was ~twofold greater, indicating sex differences in cell death upon exposure to the smoking derivatives tested.


ADF/cofilin regulates secretory cargo sorting at the TGN via the Ca2+ ATPase SPCA1.

  • Julia von Blume‎ et al.
  • Developmental cell‎
  • 2011‎

Actin-severing proteins ADF/cofilin are required for the sorting of secretory cargo at the trans-Golgi network (TGN) in mammalian cells. How do these cytoplasmic proteins interact with the cargoes in the lumen of the TGN? Put simply, how are these two sets of proteins connected across the TGN membrane? Mass spectrometry of cofilin1 immunoprecipitated from HeLa cells revealed the presence of actin and the Ca(2+) ATPase SPCA1. Moreover, cofilin1 was localized to the TGN and bound to SPCA1 via dynamic actin. SPCA1 knockdown, like ADF/cofilin1 knockdown, inhibited Ca(2+) uptake into the TGN and caused missorting of secretory cargo. These defects were rescued by the overexpression of the TGN-localized SPCA1. We propose that ADF/cofilin-dependent severing of actin filaments exposes and promotes the activation of SPCA1, which pumps Ca(2+) into the lumen of the TGN for the sorting of the class of secretory cargo that binds Ca(2+).


Human PSC-Derived Hepatocytes Express Low Levels of Viral Pathogen Recognition Receptors, but Are Capable of Mounting an Effective Innate Immune Response.

  • Lena Fischer‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Hepatocytes are key players in the innate immune response to liver pathogens but are challenging to study because of inaccessibility and a short half-life. Recent advances in in vitro differentiation of hepatocyte-like cells (HLCs) facilitated studies of hepatocyte-pathogen interactions. Here, we aimed to define the anti-viral innate immune potential of human HLCs with a focus on toll-like receptor (TLR)-expression and the presence of a metabolic switch. We analysed cytoplasmic pattern recognition receptor (PRR)- and endosomal TLR-expression and activity and adaptation of HLCs to an inflammatory environment. We found that transcript levels of retinoic acid inducible gene I (RIG-I), melanoma differentiation antigen 5 (MDA5), and TLR3 became downregulated during differentiation, indicating the acquisition of a more tolerogenic phenotype, as expected in healthy hepatocytes. HLCs responded to activation of RIG-I by producing interferons (IFNs) and IFN-stimulated genes. Despite low-level expression of TLR3, receptor expression was upregulated in an inflammatory environment. TLR3 signalling induced expression of proinflammatory cytokines at the gene level, indicating that several PRRs need to interact for successful innate immune activation. The inflammatory responsiveness of HLCs was accompanied by the downregulation of cytochrome P450 3A and 1A2 activity and decreased serum protein production, showing that the metabolic switch seen in primary hepatocytes during anti-viral responses is also present in HLCs.


Lymphocyte Activation Dynamics Is Shaped by Hereditary Components at Chromosome Region 17q12-q21.

  • Amado Carreras-Sureda‎ et al.
  • PloS one‎
  • 2016‎

Single nucleotide polymorphisms (SNPs) located in the chromosome region 17q12-q21 are risk factors for asthma. Particularly, there are cis-regulatory haplotypes within this region that regulate differentially the expression levels of ORMDL3, GSDMB and ZPBP2 genes. Remarkably, ORMDL3 has been shown to modulate lymphocyte activation parameters in a heterologous expression system. In this context, it has been shown that Th2 and Th17 cytokine production is affected by SNPs in this region. Therefore, we aim to assess the impact of hereditary components within region 17q12-q21 on the activation profile of human T lymphocytes, focusing on the haplotype formed by allelic variants of SNPs rs7216389 and rs12936231. We measured calcium influx and activation markers, as well as the proliferation rate upon T cell activation. Haplotype-dependent differences in mRNA expression levels of IL-2 and INF-γ were observed at early times after activation. In addition, the allelic variants of these SNPs impacted on the extent of calcium influx in resting lymphocytes and altered proliferation rates in a dose dependent manner. As a result, the asthma risk haplotype carriers showed a lower threshold of saturation during activation. Finally, we confirmed differences in activation marker expression by flow cytometry using phytohemagglutinin, a strong polyclonal stimulus. Altogether, our data suggest that the genetic component of pro-inflammatory pathologies present in this chromosome region could be explained by different T lymphocyte activation dynamics depending on individual allelic heredity.


Gene networks and transcription factor motifs defining the differentiation of stem cells into hepatocyte-like cells.

  • Patricio Godoy‎ et al.
  • Journal of hepatology‎
  • 2015‎

The differentiation of stem cells to hepatocyte-like cells (HLC) offers the perspective of unlimited supply of human hepatocytes. However, the degree of differentiation of HLC remains controversial. To obtain an unbiased characterization, we performed a transcriptomic study with HLC derived from human embryonic and induced stem cells (ESC, hiPSC) from three different laboratories.


Pluripotent Stem Cell-Derived Hepatocytes Inhibit T Cell Proliferation In Vitro through Tryptophan Starvation.

  • Marco Romano‎ et al.
  • Cells‎
  • 2021‎

Regenerative medicine aims to replace damaged tissues by stimulating endogenous tissue repair or by transplanting autologous or allogeneic cells. Due to their capacity to produce unlimited numbers of cells of a given cell type, pluripotent stem cells, whether of embryonic origin or induced via the reprogramming of somatic cells, are of considerable therapeutic interest in the regenerative medicine field. However, regardless of the cell type, host immune responses present a barrier to success. The aim of this study was to investigate in vitro the immunological properties of human pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLCs). These cells expressed MHC class I molecules while they lacked MHC class II and co-stimulatory molecules, such as CD80 and CD86. Following stimulation with IFN-γ, HLCs upregulated CD40, PD-L1 and MHC class I molecules. When co-cultured with allogeneic T cells, HLCs did not induce T cell proliferation; furthermore, when T cells were stimulated via αCD3/CD28 beads, HLCs inhibited their proliferation via IDO1 and tryptophan deprivation. These results demonstrate that PSC-derived HLCs possess immunoregulatory functions, at least in vitro.


The TAM-associated STIM1I484R mutation increases ORAI1 channel function due to a reduced STIM1 inactivation break and an absence of microtubule trapping.

  • Ji-Hee Kim‎ et al.
  • Cell calcium‎
  • 2022‎

Tubular aggregate myopathy (TAM) is a progressive skeletal muscle disease associated with gain-of-function mutations in the ER Ca2+ sensor STIM1 that mediates store-operated Ca2+ entry (SOCE) across the Ca2+-release-activated (CRAC) Ca2+ channel ORAI1. A frameshift mutation in STIM1 inactivation domain, STIM1I484R, was identified in a TAM patient and reported to decrease SOCE. Using ion imaging and electrophysiology, we show that the STIM1I484R mutation instead renders STIM1 constitutively active. In ion imaging experiments, STIM1I484R was less efficient than native STIM1 when expressed alone but enhanced SOCE and increased basal Ca2+ and Mn2+ influx when expressed together with ORAI1. In patch-clamp recordings, STIM1I484R generated larger pre-activated CRAC currents lacking slow Ca2+-dependent inhibition (SCDI). STIM1I484R was pre-recruited in plasma membrane clusters when co-expressed with ORAI1, as were mutants truncated at the frameshift residue or lacking EB-1-binding, which recapitulated STIM1I484R gain-of-function. When expressed alone in human primary myoblasts, STIM1I484R was pre-recruited in large clusters and increased basal Ca2+ entry. These observations establish that STIM1I484R confers a gain of CRAC channel function due to the loss of critical inhibitory C-terminal domains that prevent STIM1 binding to ORAI1, enable STIM1 trapping by microtubules, and mediate SCDI, providing a mechanistic explanation for the muscular defects of TAM patients bearing this mutation.


The lipid transfer proteins Nir2 and Nir3 sustain phosphoinositide signaling and actin dynamics during phagocytosis.

  • Mayis Kaba‎ et al.
  • Journal of cell science‎
  • 2023‎

Changes in membrane phosphoinositides and local Ca2+ elevations at sites of particle capture coordinate the dynamic remodeling of the actin cytoskeleton during phagocytosis. Here, we show that the phosphatidylinositol (PI) transfer proteins PITPNM1 (Nir2) and PITPNM2 (Nir3) maintain phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] homeostasis at phagocytic cups, thereby promoting actin contractility and the sealing of phagosomes. Nir3 and to a lesser extent Nir2 accumulated on endoplasmic reticulum (ER) cisternae juxtaposed to phagocytic cups when expressed in phagocytic COS-7 cells. CRISPR-Cas9 editing of Nir2 and Nir3 genes decreased plasma membrane PI(4,5)P2 levels, store-operated Ca2+ entry (SOCE) and receptor-mediated phagocytosis, stalling particle capture at the cup stage. Re-expression of either Nir2 or Nir3 restored phagocytosis, but not SOCE, proportionally to the PM PI(4,5)P2 levels. Phagosomes forming in Nir2 and Nir3 (Nir2/3) double-knockout cells had decreased overall PI(4,5)P2 levels but normal periphagosomal Ca2+ signals. Nir2/3 depletion reduced the density of contractile actin rings at sites of particle capture, causing repetitive low-intensity contractile events indicative of abortive phagosome closure. We conclude that Nir proteins maintain phosphoinositide homeostasis at phagocytic cups, thereby sustaining the signals that initiate the remodeling of the actin cytoskeleton during phagocytosis.


SARS-CoV-2 infection alkalinizes the ERGIC and lysosomes through the viroporin activity of the viral envelope protein.

  • Wen-An Wang‎ et al.
  • Journal of cell science‎
  • 2023‎

The coronavirus SARS-CoV-2, the agent of the deadly COVID-19 pandemic, is an enveloped virus propagating within the endocytic and secretory organelles of host mammalian cells. Enveloped viruses modify the ionic homeostasis of organelles to render their intra-luminal milieu permissive for viral entry, replication and egress. Here, we show that infection of Vero E6 cells with the delta variant of the SARS-CoV-2 alkalinizes the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) as well as lysosomes, mimicking the effect of inhibitors of vacuolar proton ATPases. We further show the envelope protein of SARS-CoV-2 accumulates in the ERGIC when expressed in mammalian cells and selectively dissipates the ERGIC pH. This viroporin action is prevented by mutations of Val25 but not Asn15 within the channel pore of the envelope (E) protein. We conclude that the envelope protein acts as a proton channel in the ERGIC to mitigate the acidity of this intermediate compartment. The altered pH homeostasis of the ERGIC likely contributes to the virus fitness and pathogenicity, making the E channel an attractive drug target for the treatment of COVID-19.


Mathematical modelling of oxygen gradients in stem cell-derived liver tissue.

  • Joseph A Leedale‎ et al.
  • PloS one‎
  • 2021‎

A major bottleneck in the study of human liver physiology is the provision of stable liver tissue in sufficient quantity. As a result, current approaches to modelling human drug efficacy and toxicity rely heavily on immortalized human and animal cell lines. These models are informative but do possess significant drawbacks. To address the issues presented by those models, researchers have turned to pluripotent stem cells (PSCs). PSCs can be generated from defined genetic backgrounds, are scalable, and capable of differentiation to all the cell types found in the human body, representing an attractive source of somatic cells for in vitro and in vivo endeavours. Although unlimited numbers of somatic cell types can be generated in vitro, their maturation still remains problematic. In order to develop high fidelity PSC-derived liver tissue, it is necessary to better understand the cell microenvironment in vitro including key elements of liver physiology. In vivo a major driver of zonated liver function is the oxygen gradient that exists from periportal to pericentral regions. In this paper, we demonstrate how cell culture conditions for PSC-derived liver sphere systems can be optimised to recapitulate physiologically relevant oxygen gradients by using mathematical modelling. The mathematical model incorporates some often-understated features and mechanisms of traditional spheroid systems such as cell-specific oxygen uptake, media volume, spheroid size, and well dimensions that can lead to a spatially heterogeneous distribution of oxygen. This mathematical modelling approach allows for the calibration and identification of culture conditions required to generate physiologically realistic function within the microtissue through recapitulation of the in vivo microenvironment.


Genotoxic stress triggers the activation of IRE1α-dependent RNA decay to modulate the DNA damage response.

  • Estefanie Dufey‎ et al.
  • Nature communications‎
  • 2020‎

The molecular connections between homeostatic systems that maintain both genome integrity and proteostasis are poorly understood. Here we identify the selective activation of the unfolded protein response transducer IRE1α under genotoxic stress to modulate repair programs and sustain cell survival. DNA damage engages IRE1α signaling in the absence of an endoplasmic reticulum (ER) stress signature, leading to the exclusive activation of regulated IRE1α-dependent decay (RIDD) without activating its canonical output mediated by the transcription factor XBP1. IRE1α endoribonuclease activity controls the stability of mRNAs involved in the DNA damage response, impacting DNA repair, cell cycle arrest and apoptosis. The activation of the c-Abl kinase by DNA damage triggers the oligomerization of IRE1α to catalyze RIDD. The protective role of IRE1α under genotoxic stress is conserved in fly and mouse. Altogether, our results uncover an important intersection between the molecular pathways that sustain genome stability and proteostasis.


CD6 modulates thymocyte selection and peripheral T cell homeostasis.

  • Marc Orta-Mascaró‎ et al.
  • The Journal of experimental medicine‎
  • 2016‎

The CD6 glycoprotein is a lymphocyte surface receptor putatively involved in T cell development and activation. CD6 facilitates adhesion between T cells and antigen-presenting cells through its interaction with CD166/ALCAM (activated leukocyte cell adhesion molecule), and physically associates with the T cell receptor (TCR) at the center of the immunological synapse. However, its precise role during thymocyte development and peripheral T cell immune responses remains to be defined. Here, we analyze the in vivo consequences of CD6 deficiency. CD6(-/-) thymi showed a reduction in both CD4(+) and CD8(+) single-positive subsets, and double-positive thymocytes exhibited increased Ca(2+) mobilization to TCR cross-linking in vitro. Bone marrow chimera experiments revealed a T cell-autonomous selective disadvantage of CD6(-/-) T cells during development. The analysis of TCR-transgenic mice (OT-I and Marilyn) confirmed that abnormal T cell selection events occur in the absence of CD6. CD6(-/-) mice displayed increased frequencies of antigen-experienced peripheral T cells generated under certain levels of TCR signal strength or co-stimulation, such as effector/memory (CD4(+)TEM and CD8(+)TCM) and regulatory (T reg) T cells. The suppressive activity of CD6(-/-) T reg cells was diminished, and CD6(-/-) mice presented an exacerbated autoimmune response to collagen. Collectively, these data indicate that CD6 modulates the threshold for thymocyte selection and the generation and/or function of several peripheral T cell subpopulations, including T reg cells.


Gene network activity in cultivated primary hepatocytes is highly similar to diseased mammalian liver tissue.

  • Patricio Godoy‎ et al.
  • Archives of toxicology‎
  • 2016‎

It is well known that isolation and cultivation of primary hepatocytes cause major gene expression alterations. In the present genome-wide, time-resolved study of cultivated human and mouse hepatocytes, we made the observation that expression changes in culture strongly resemble alterations in liver diseases. Hepatocytes of both species were cultivated in collagen sandwich and in monolayer conditions. Genome-wide data were also obtained from human NAFLD, cirrhosis, HCC and hepatitis B virus-infected tissue as well as mouse livers after partial hepatectomy, CCl4 intoxication, obesity, HCC and LPS. A strong similarity between cultivation and disease-induced expression alterations was observed. For example, expression changes in hepatocytes induced by 1-day cultivation and 1-day CCl4 exposure in vivo correlated with R = 0.615 (p < 0.001). Interspecies comparison identified predominantly similar responses in human and mouse hepatocytes but also a set of genes that responded differently. Unsupervised clustering of altered genes identified three main clusters: (1) downregulated genes corresponding to mature liver functions, (2) upregulation of an inflammation/RNA processing cluster and (3) upregulated migration/cell cycle-associated genes. Gene regulatory network analysis highlights overrepresented and deregulated HNF4 and CAR (Cluster 1), Krüppel-like factors MafF and ELK1 (Cluster 2) as well as ETF (Cluster 3) among the interspecies conserved key regulators of expression changes. Interventions ameliorating but not abrogating cultivation-induced responses include removal of non-parenchymal cells, generation of the hepatocytes' own matrix in spheroids, supplementation with bile salts and siRNA-mediated suppression of key transcription factors. In conclusion, this study shows that gene regulatory network alterations of cultivated hepatocytes resemble those of inflammatory liver diseases and should therefore be considered and exploited as disease models.


A human pluripotent stem cell model for the analysis of metabolic dysfunction in hepatic steatosis.

  • Matthew C Sinton‎ et al.
  • iScience‎
  • 2021‎

Nonalcoholic fatty liver disease (NAFLD) is currently the most prevalent form of liver disease worldwide. This term encompasses a spectrum of pathologies, from benign hepatic steatosis to non-alcoholic steatohepatitis, which have, to date, been challenging to model in the laboratory setting. Here, we present a human pluripotent stem cell (hPSC)-derived model of hepatic steatosis, which overcomes inherent challenges of current models and provides insights into the metabolic rewiring associated with steatosis. Following induction of macrovesicular steatosis in hepatocyte-like cells using lactate, pyruvate, and octanoate (LPO), respirometry and transcriptomic analyses revealed compromised electron transport chain activity. 13C isotopic tracing studies revealed enhanced TCA cycle anaplerosis, with concomitant development of a compensatory purine nucleotide cycle shunt leading to excess generation of fumarate. This model of hepatic steatosis is reproducible, scalable, and overcomes the challenges of studying mitochondrial metabolism in currently available models.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: