Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

The TNF-family cytokine TL1A inhibits proliferation of human activated B cells.

  • Chiara Cavallini‎ et al.
  • PloS one‎
  • 2013‎

Death receptor (DR3) 3 is a member of the TNFR superfamily. Its ligand is TNF-like ligand 1A (TL1A), a member of the TNF superfamily. TL1A/DR3 interactions have been reported to modulate the functions of T cells, NK, and NKT cells and play a crucial role in driving inflammatory processes in several T-cell-dependent autoimmune diseases. However, TL1A expression and effects on B cells remain largely unknown. In this study, we described for the first time that B cells from human blood express significant amounts of DR3 in response to B cell receptor polyclonal stimulation. The relevance of these results has been confirmed by immunofluorescence analysis in tonsil and spleen tissue specimens, which showed the in situ expression of DR3 in antigen-stimulated B cells in vivo. Remarkably, we demonstrated that TL1A reduces B-cell proliferation induced by anti-IgM-antibodies and IL-2 but did not affect B-cell survival, suggesting that TL1A inhibits the signal(s) important for B-cell proliferation. These results revealed a novel function of TL1A in modulating B-cell proliferation in vitro and suggest that TL1A may contribute to homeostasis of effector B-cell functions in immune response and host defense, thus supporting the role of the TL1A/DR3 functional axis in modulating the adaptive immune response.


Novel stem/progenitor cells with neuronal differentiation potential reside in the leptomeningeal niche.

  • Francesco Bifari‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2009‎

Stem cells capable of generating neural differentiated cells are recognized by the expression of nestin and reside in specific regions of the brain, namely, hippocampus, subventricular zone and olfactory bulb. For other brain structures, such as leptomeninges, which contribute to the correct cortex development and functions, there is no evidence so far that they may contain stem/precursor cells. In this work, we show for the first time that nestin-positive cells are present in rat leptomeninges during development up to adulthood. The newly identified nestin-positive cells can be extracted and expanded in vitro both as neurospheres, displaying high similarity with subventricular zone-derived neural stem cells, and as homogeneous cell population with stem cell features. In vitro expanded stem cell population can differentiate with high efficiency into excitable cells with neuronal phenotype and morphology. Once injected into the adult brain, these cells survive and differentiate into neurons, thus showing that their neuronal differentiation potential is operational also in vivo. In conclusion, our data provide evidence that a specific population of immature cells endowed of neuronal differentiation potential is resident in the leptomeninges throughout the life. As leptomeninges cover the entire central nervous system, these findings could have relevant implications for studies on cortical development and for regenerative medicine applied to neurological disorders.


Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine loop that is enhanced by CXCL12.

  • Antonella Rigo‎ et al.
  • Molecular cancer‎
  • 2010‎

Increased numbers of tumour-associated macrophages correlate with shortened survival in some cancers. The molecular bases of this correlation are not thoroughly understood. Events triggered by CXCL12 may play a part, as CXCL12 drives the migration of both CXCR4-positive cancer cells and macrophages and may promote a molecular crosstalk between them.


Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia.

  • Elisabetta Flex‎ et al.
  • The Journal of experimental medicine‎
  • 2008‎

Aberrant signal transduction contributes substantially to leukemogenesis. The Janus kinase 1 (JAK1) gene encodes a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors and plays a nonredundant role in lymphoid cell precursor proliferation, survival, and differentiation. We report that somatic mutations in JAK1 occur in individuals with acute lymphoblastic leukemia (ALL). JAK1 mutations were more prevalent among adult subjects with the T cell precursor ALL, where they accounted for 18% of cases, and were associated with advanced age at diagnosis, poor response to therapy, and overall prognosis. All mutations were missense, and some were predicted to destabilize interdomain interactions controlling the activity of the kinase. Three mutations that were studied promoted JAK1 gain of function and conferred interleukin (IL)-3-independent growth in Ba/F3 cells and/or IL-9-independent resistance to dexamethasone-induced apoptosis in T cell lymphoma BW5147 cells. Such effects were associated with variably enhanced activation of multiple downstream signaling pathways. Leukemic cells with mutated JAK1 alleles shared a gene expression signature characterized by transcriptional up-regulation of genes positively controlled by JAK signaling. Our findings implicate dysregulated JAK1 function in ALL, particularly of T cell origin, and point to this kinase as a target for the development of novel antileukemic drugs.


Epstein-Barr virus DNA load in chronic lymphocytic leukemia is an independent predictor of clinical course and survival.

  • Carlo Visco‎ et al.
  • Oncotarget‎
  • 2015‎

The relation between Epstein-Barr virus (EBV) DNA load and clinical course of patients with chronic lymphocytic leukemia (CLL) is unknown. We assessed EBV DNA load by quantitative PCR at CLL presentation in mononuclear cells (MNC) of 220 prospective patients that were enrolled and followed-up in two major Institutions. In 20 patients EBV DNA load was also assessed on plasma samples. Forty-one age-matched healthy subjects were tested for EBV DNA load on MNC. Findings were validated in an independent retrospective cohort of 112 patients with CLL. EBV DNA load was detectable in 59%, and high (≥2000 copies/µg DNA) in 19% of patients, but it was negative in plasma samples. EBV DNA load was significantly higher in CLL patients than in healthy subjects (P < .0001). No relation was found between high EBV load and clinical stage or biological variables, except for 11q deletion (P = .004), CD38 expression (P = .003), and NOTCH1 mutations (P = .05). High EBV load led to a 3.14-fold increase in the hazard ratio of death and to a shorter overall survival (OS; P = .001). Poor OS was attributable, at least in part, to shorter time-to-first-treatment (P = .0008), with no higher risk of Richter's transformation or second cancer. Multivariate analysis selected high levels of EBV load as independent predictor of OS after controlling for confounding clinical and biological variables. EBV DNA load at presentation is an independent predictor of OS in patients with CLL.


G-CSF-stimulated neutrophils are a prominent source of functional BLyS.

  • Patrizia Scapini‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

B lymphocyte stimulator (BLyS) is a novel member of the TNF ligand superfamily that is important in B cell maturation and survival. We demonstrate that human neutrophils, after incubation with G-CSF or, less efficiently, IFN gamma, express high levels of BLyS mRNA and release elevated amounts of biologically active BLyS. In contrast, surface expression of the membrane-bound BLyS was not detected in activated neutrophils. Indeed, in neutrophils, uniquely among other myeloid cells, soluble BLyS is processed intracellularly by a furin-type convertase. Worthy of note, the absolute capacity of G-CSF-stimulated neutrophils to release BLyS was similar to that of activated monocytes or dendritic cells, suggesting that neutrophils might represent an important source of BLyS. In this regard, we show that BLyS serum levels as well as neutrophil-associated BLyS are significantly enhanced after in vivo administration of G-CSF in patients. In addition, serum obtained from two of these patients induced a remarkable accumulation of neutrophil-associated BLyS in vitro. This effect was neutralized by anti-G-CSF antibodies, indicating that G-CSF, present in the serum, stimulated neutrophils to produce BLyS. Collectively, our findings suggest that neutrophils, through the production of BLyS, might play an unsuspected role in the regulation of B cell homeostasis.


VR09 cell line: an EBV-positive lymphoblastoid cell line with in vivo characteristics of diffuse large B cell lymphoma of activated B-cell type.

  • Ilaria Nichele‎ et al.
  • PloS one‎
  • 2012‎

small B-cell neoplasms can show plasmacytic differentiation and may potentially progress to aggressive lymphoma (DLBCL). Epstein-Barr virus (EBV) infection may cause the transformation of malignant cells in vitro.


α-bisabolol is an effective proapoptotic agent against BCR-ABL(+) cells in synergism with Imatinib and Nilotinib.

  • Massimiliano Bonifacio‎ et al.
  • PloS one‎
  • 2012‎

We showed that α-bisabolol is active against primary acute leukemia cells, including BCR-ABL(+) acute lymphoblastic leukemias (ALL). Here we studied the activity of α-bisabolol against BCR-ABL(+) cells using 3 cell lines (K562, LAMA-84, CML-T1) and 10 primary BCR-ABL(+) ALL samples. We found that: (a) α-bisabolol was effective in reducing BCR-ABL(+) cell viabilty at concentrations ranging from 53 to 73 µM; (b) α-bisabolol concentrations in BCR-ABL(+) cellular compartments were 4- to 12-fold higher than in normal cells, thus indicating a preferential intake in neoplastic cells; (c) α-bisabolol displayed a slight to strong synergism with the Tyrosine Kinase Inhibitors (TKI) imatinib and nilotinib: the combination of α-bisabolol+imatinib allowed a dose reduction of each compound up to 7.2 and 9.4-fold respectively, while the combination of α-bisabolol+nilotinib up to 6.7 and 5-fold respectively; (d) α-bisabolol-induced apoptosis was associated with loss of plasma membrane integrity, irreversible opening of mitochondrial transition pore, disruption of mitochondrial potential, inhibition of oxygen consumption and increase of intracellular reactive oxygen species. These data indicate α-bisabolol as a candidate for treatment of BCR-ABL(+) leukemias to overcome resistance to TKI alone and to target leukemic cells through BCR-ABL-independent pathways.


Expression and function of the TL1A/DR3 axis in chronic lymphocytic leukemia.

  • Chiara Cavallini‎ et al.
  • Oncotarget‎
  • 2015‎

TNF-like ligand 1A (TL1A) and its unique receptor death receptor 3 (DR3) acts as broad T-cell costimulator involved in regulatory mechanisms of adaptive immune response under physiological and pathological settings. Moreover, we have recently shown that TL1A negatively regulates B-cell proliferation. Despite increasing interest on the TL1A/DR3-axis functions, very little is known on its expression and role in leukemia. In this study, we investigated the expression and function of TL1A/DR3 axis in chronic lymphocytic leukemia (CLL). DR3 was differentially expressed in activated CLL cells and predominantly detected in patients with early clinical stage disease. Soluble TL1A has been revealed in the sera of CLL patients where higher TL1A levels were associated with early stage disease. T cells, monocytes and leukemic B cells have been identified as major sources of TL1A in CLL. The relevance of these findings has been sustained by functional data showing that exogenous TL1A reduces CLL proliferation induced by stimulation of the B cell receptor. Overall, these data document the expression of the TL1A/DR3 axis in early-stage CLL. They also identify a novel function for TL1A as a negative regulator of leukemic cell proliferation that may influence the CLL physiopathology and clinical outcome at an early-stage disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: