Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Understanding motor acts and motor intentions in Williams syndrome.

  • Laura Sparaci‎ et al.
  • Neuropsychologia‎
  • 2012‎

Williams syndrome (WS) is a rare genetic disorder associated with unusually hyper-social demeanor and ease with strangers. These personality traits are accompanied by difficulties in social interactions, possibly related, at least in part, to a difficulty in understanding others' mental states. Studies on mentalizing capacities in individuals with WS have often led to contrasting results, some studies revealing specific impairments, others highlighting spared mentalizing capacities. So far, however, no study investigated the performance of individuals with WS in non-inferential understanding of others' motor intentions. In the present study we investigated this capacity by using a computer-based behavioral task using pictures of hand-object interactions. We asked individuals with WS first to describe what the other was doing (i.e. a task implying no kind of intention reading), and secondly, if successful in answering the first question, to describe the motor intention underlying the observed motor acts (i.e. why an act was being done, a task requiring non-inferential motor intention understanding). Results showed that individuals with WS made more errors in understanding what the other was doing (i.e. understanding a motor act) compared to both mental-age matched controls and chronological-age matched peers with typical development, while showing mental-age appropriate performance in understanding why an individual was acting (i.e. understanding a motor intention). These findings suggest novel perspectives for understanding impairments in social behavior in WS.


Brain response to a humanoid robot in areas implicated in the perception of human emotional gestures.

  • Thierry Chaminade‎ et al.
  • PloS one‎
  • 2010‎

The humanoid robot WE4-RII was designed to express human emotions in order to improve human-robot interaction. We can read the emotions depicted in its gestures, yet might utilize different neural processes than those used for reading the emotions in human agents.


Perspective-dependent reactivity of sensorimotor mu rhythm in alpha and beta ranges during action observation: an EEG study.

  • Monica Angelini‎ et al.
  • Scientific reports‎
  • 2018‎

During action observation, several visual features of observed actions can modulate the level of sensorimotor reactivity in the onlooker. Among possibly relevant parameters, one of the less investigated in humans is the visual perspective from which actions are observed. In the present EEG study, we assessed the reactivity of alpha and beta mu rhythm subcomponents to four different visual perspectives, defined by the position of the observer relative to the moving agent (identifying first-person, third-person and lateral viewpoints) and by the anatomical compatibility of observed effectors with self- or other individual's body (identifying ego- and allo-centric viewpoints, respectively). Overall, the strongest sensorimotor responsiveness emerged for first-person perspective. Furthermore, we found different patterns of perspective-dependent reactivity in rolandic alpha and beta ranges, with the former tuned to visuospatial details of observed actions and the latter tuned to action-related parameters (such as the direction of actions relative to the observer), suggesting a higher recruitment of beta motor rhythm in face-to-face interactions. The impact of these findings on the selection of most effective action stimuli for "Action Observation Treatment" neurorehabilitative protocols is discussed.


Specificity of esthetic experience for artworks: an FMRI study.

  • Cinzia Di Dio‎ et al.
  • Frontiers in human neuroscience‎
  • 2011‎

In a previous functional magnetic resonance imaging (fMRI) study, where we investigated the neural correlates of esthetic experience, we found that observing canonical sculptures, relative to sculptures whose proportions had been modified, produced the activation of a network that included the lateral occipital gyrus, precuneus, prefrontal areas, and, most interestingly, the right anterior insula. We interpreted this latter activation as the neural signature underpinning hedonic response during esthetic experience. With the aim of exploring whether this specific hedonic response is also present during the observation of non-art biological stimuli, in the present fMRI study we compared the activations associated with viewing masterpieces of classical sculpture with those produced by the observation of pictures of young athletes. The two stimulus-categories were matched on various factors, including body postures, proportion, and expressed dynamism. The stimuli were presented in two conditions: observation and esthetic judgment. The two stimulus-categories produced a rather similar global activation pattern. Direct comparisons between sculpture and real-body images revealed, however, relevant differences, among which the activation of right antero-dorsal insula during sculptures viewing only. Along with our previous data, this finding suggests that the hedonic state associated with activation of right dorsal anterior insula underpins esthetic experience for artworks.


Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust.

  • Bruno Wicker‎ et al.
  • Neuron‎
  • 2003‎

What neural mechanism underlies the capacity to understand the emotions of others? Does this mechanism involve brain areas normally involved in experiencing the same emotion? We performed an fMRI study in which participants inhaled odorants producing a strong feeling of disgust. The same participants observed video clips showing the emotional facial expression of disgust. Observing such faces and feeling disgust activated the same sites in the anterior insula and to a lesser extent in the anterior cingulate cortex. Thus, as observing hand actions activates the observer's motor representation of that action, observing an emotion activates the neural representation of that emotion. This finding provides a unifying mechanism for understanding the behaviors of others.


Action execution and action observation elicit mirror responses with the same temporal profile in human SII.

  • Maria Del Vecchio‎ et al.
  • Communications biology‎
  • 2020‎

The properties of the secondary somatosensory area (SII) have been described by many studies in monkeys and humans. Recent studies on monkeys, however, showed that beyond somatosensory stimuli, SII responds to a wider number of stimuli, a finding requiring a revision that human SII is purely sensorimotor. By recording cortical activity with stereotactic electroencephalography (stereo-EEG), we examined the properties of SI and SII in response to a motor task requiring reaching, grasping and manipulation, as well as the observation of the same actions. Furthermore, we functionally characterized this area with a set of clinical tests, including tactile, acoustical, and visual stimuli. The results showed that only SII activates both during execution and observation with a common temporal profile, whereas SI response were limited to execution. Together with their peculiar response to tactile stimuli, we conclude that the role of SII is pivotal also in the observation of actions involving haptic control.


Electroencephalographic time-frequency patterns of braking and acceleration movement preparation in car driving simulation.

  • Giovanni Vecchiato‎ et al.
  • Brain research‎
  • 2019‎

The objective of the present work was to identify electroencephalographic (EEG) components in order to distinguish between braking and accelerating intention in simulated car driving. To do so, we collected high-density EEG data from thirty participants while they were driving in a car simulator. The EEG was separated into independent components that were clustered across participants according to their scalp map topographies. For each component, time-frequency activity related to braking and acceleration events was determined through wavelet analysis, and the cortical generators were estimated through minimum norm source localisation. Comparisons of the time-frequency patterns of power and phase activations revealed that theta power synchronisation distinguishes braking from acceleration events 800 ms before the action and that phase-locked activity increases for braking 800 ms before foot movement in the theta-alpha frequency range. In addition, source reconstruction showed that the dorso-mesial part of the premotor cortex plays a key role in preparation of foot movement. Overall, the results illustrate that dorso-mesial premotor areas are involved in movement preparation while driving, and that low-frequency EEG rhythms could be exploited to predict drivers' intention to brake or accelerate.


Mirth and laughter elicited by electrical stimulation of the human anterior cingulate cortex.

  • Fausto Caruana‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2015‎

Laughter is a complex motor behavior that, typically, expresses mirth. Despite its fundamental role in social life, knowledge about the neural basis of laughter is very limited and mostly based on a few electrical stimulation (ES) studies carried out in epileptic patients. In these studies laughter was elicited from temporal areas where it was accompanied by mirth and from frontal areas plus an anterior cingulate case where laughter without mirth was observed. On the basis of these findings, it has been proposed a dichotomy between temporal lobe areas processing the emotional content of laughter and anterior cingulate cortex (ACC) and motor areas responsible of laughter production. The present study is aimed to understand the role of ACC in laughter. We report the effects of stimulation of 10 rostral, pregenual ACC (pACC) patients in which the ES elicited laughter. In half of the patients ES elicited a clear burst of laughter with mirth, while in the other half mirth was not evident. This large dataset allow us to offer a more reliable picture of the functional contribute of this region in laughter, and to precisely localize it in the cingulate cortex. We conclude that the pACC is involved in both the motor and the affective components of emotions, and challenge the validity of a sharp dichotomy between motor and emotional centers for laughing. Finally, we suggest a possible anatomical network for the production of positive emotional expressions.


Understanding others' regret: a FMRI study.

  • Nicola Canessa‎ et al.
  • PloS one‎
  • 2009‎

Previous studies showed that the understanding of others' basic emotional experiences is based on a "resonant" mechanism, i.e., on the reactivation, in the observer's brain, of the cerebral areas associated with those experiences. The present study aimed to investigate whether the same neural mechanism is activated both when experiencing and attending complex, cognitively-generated, emotions. A gambling task and functional-Magnetic-Resonance-Imaging (fMRI) were used to test this hypothesis using regret, the negative cognitively-based emotion resulting from an unfavorable counterfactual comparison between the outcomes of chosen and discarded options. Do the same brain structures that mediate the experience of regret become active in the observation of situations eliciting regret in another individual? Here we show that observing the regretful outcomes of someone else's choices activates the same regions that are activated during a first-person experience of regret, i.e. the ventromedial prefrontal cortex, anterior cingulate cortex and hippocampus. These results extend the possible role of a mirror-like mechanism beyond basic emotions.


Observation of others' actions during limb immobilization prevents the subsequent decay of motor performance.

  • Doriana De Marco‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

There is rich clinical evidence that observing normally executed actions promotes the recovery of the corresponding action execution in patients with motor deficits. In this study, we assessed the ability of action observation to prevent the decay of healthy individuals' motor abilities following upper-limb immobilization. To this end, upper-limb kinematics was recorded in healthy participants while they performed three reach-to-grasp movements before immobilization and the same movements after 16 h of immobilization. The participants were subdivided into two groups; the experimental group observed, during the immobilization, the same reach-to-grasp movements they had performed before immobilization, whereas the control group observed natural scenarios. After bandage removal, motor impairment in performing reach-to-grasp movements was milder in the experimental group. These findings support the hypothesis that action observation, via the mirror mechanism, plays a protective role against the decline of motor performance induced by limb nonuse. From this perspective, action observation therapy is a promising tool for anticipating rehabilitation onset in clinical conditions involving limb nonuse, thus reducing the burden of further rehabilitation.


Responses of mirror neurons in area F5 to hand and tool grasping observation.

  • Magali J Rochat‎ et al.
  • Experimental brain research‎
  • 2010‎

Mirror neurons are a distinct class of neurons that discharge both during the execution of a motor act and during observation of the same or similar motor act performed by another individual. However, the extent to which mirror neurons coding a motor act with a specific goal (e.g., grasping) might also respond to the observation of a motor act having the same goal, but achieved with artificial effectors, is not yet established. In the present study, we addressed this issue by recording mirror neurons from the ventral premotor cortex (area F5) of two monkeys trained to grasp objects with pliers. Neuron activity was recorded during the observation and execution of grasping performed with the hand, with pliers and during observation of an experimenter spearing food with a stick. The results showed that virtually all neurons responding to the observation of hand grasping also responded to the observation of grasping with pliers and, many of them to the observation of spearing with a stick. However, the intensity and pattern of the response differed among conditions. Hand grasping observation determined the earliest and the strongest discharge, while pliers grasping and spearing observation triggered weaker responses at longer latencies. We conclude that F5 grasping mirror neurons respond to the observation of a family of stimuli leading to the same goal. However, the response pattern depends upon the similarity between the observed motor act and the one executed by the hand, the natural motor template.


Agent-based representations of objects and actions in the monkey pre-supplementary motor area.

  • Alessandro Livi‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

Information about objects around us is essential for planning actions and for predicting those of others. Here, we studied pre-supplementary motor area F6 neurons with a task in which monkeys viewed and grasped (or refrained from grasping) objects, and then observed a human doing the same task. We found "action-related neurons" encoding selectively monkey's own action [self-type (ST)], another agent's action [other-type (OT)], or both [self- and other-type (SOT)]. Interestingly, we found "object-related neurons" exhibiting the same type of selectivity before action onset: Indeed, distinct sets of neurons discharged when visually presented objects were targeted by the monkey's own action (ST), another agent's action (OT), or both (SOT). Notably, object-related neurons appear to signal self and other's intention to grasp and the most likely grip type that will be performed, whereas action-related neurons encode a general goal attainment signal devoid of any specificity for the observed grip type. Time-resolved cross-modal population decoding revealed that F6 neurons first integrate information about object and context to generate an agent-shared signal specifying whether and how the object will be grasped, which progressively turns into a broader agent-based goal attainment signal during action unfolding. Importantly, shared representation of objects critically depends upon their location in the observer's peripersonal space, suggesting an "object-mirroring" mechanism through which observers could accurately predict others' impending action by recruiting the same motor representation they would activate if they were to act upon the same object in the same context.


Investigating form and content of emotional and non-emotional laughing.

  • Giada Lombardi‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2023‎

As cold actions (i.e. actions devoid of an emotional content), also emotions are expressed with different vitality forms. For example, when an individual experiences a positive emotion, such as laughing as expression of happiness, this emotion can be conveyed to others by different intensities of face expressions and body postures. In the present study, we investigated whether the observation of emotions, expressed with different vitality forms, activates the same neural structures as those involved in cold action vitality forms processing. To this purpose, we carried out a functional magnetic resonance imaging study in which participants were tested in 2 conditions: emotional and non-emotional laughing both conveying different vitality forms. There are 3 main results. First, the observation of emotional and non-emotional laughing conveying different vitality forms activates the insula. Second, the observation of emotional laughing activates a series of subcortical structures known to be related to emotions. Furthermore, a region of interest analysis carried out in these structures reveals a significant modulation of the blood-oxygen-leveldependent (BOLD) signal during the processing of different vitality forms exclusively in the right amygdala, right anterior thalamus/hypothalamus, and periaqueductal gray. Third, in a subsequent electromyography study, we found a correlation between the zygomatic muscles activity and BOLD signal in the right amygdala only.


The neural correlates of velocity processing during the observation of a biological effector in the parietal and premotor cortex.

  • Cinzia Di Dio‎ et al.
  • NeuroImage‎
  • 2013‎

While there have been several studies investigating the neural correlates of action observation associated with hand grasping movements, comparatively little is known about the neural bases of observation of reaching movements. In two experiments, using functional magnetic resonance imaging (fMRI), we defined the cortical areas encoding reaching movements and assessed their sensitivity to biological motion and to movement velocity. In the first experiment, participants observed video-clips showing either a biological effector (an arm) or a non-biological object (rolling cylinder) reaching toward a target with a biological and a non-biological motion, respectively. In the second experiment, participants observed video-clips showing either a biological effector (an arm) or a non-biological object (an arrow) reaching toward a target with the same biological motion profiles. The results of the two experiments revealed activation of superior parietal and dorsal premotor sites during observation of the biological motion only, independent of whether it was performed by a biological effector (reaching arm) or a non-biological object (reaching arrow). These areas were not activated when participants observed the non-biological movement (rolling cylinder). To assess the responsiveness of parietal and frontal sites to movement velocity, the fMRI repetition-suppression (RS) technique was used, in which movement was shown with same or different velocities between consecutive videos, and observation of identical stimuli was contrasted with observation of different stimuli. Regions of interest were defined in the parietal and frontal cortices, and their response to stimulus repetition was analyzed (same vs. different velocities). The results showed an RS effect for velocity only during the observation of movements performed by the biological effector and not by the non-biological object. These data indicate that dorsal premotor and superior parietal areas represent a neural substrate involved in the encoding of reaching movements and that their responsiveness to movement velocity of a biological effector could be instrumental to the discrimination of movements performed by others.


Architectural experience influences the processing of others' body expressions.

  • Paolo Presti‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

The interplay between space and cognition is a crucial issue in Neuroscience leading to the development of multiple research fields. However, the relationship between architectural space and the movement of the inhabitants and their interactions has been too often neglected, failing to provide a unifying view of architecture's capacity to modulate social cognition broadly. We bridge this gap by requesting participants to judge avatars' emotional expression (high vs. low arousal) at the end of their promenade inside high- or low-arousing architectures. Stimuli were presented in virtual reality to ensure a dynamic, naturalistic experience. High-density electroencephalography (EEG) was recorded to assess the neural responses to the avatar's presentation. Observing highly aroused avatars increased Late Positive Potentials (LPP), in line with previous evidence. Strikingly, 250 ms before the occurrence of the LPP, P200 amplitude increased due to the experience of low-arousing architectures, reflecting an early greater attention during the processing of body expressions. In addition, participants stared longer at the avatar's head and judged the observed posture as more arousing. Source localization highlighted a contribution of the dorsal premotor cortex to both P200 and LPP. In conclusion, the immersive and dynamic architectural experience modulates human social cognition. In addition, the motor system plays a role in processing architecture and body expressions suggesting that the space and social cognition interplay is rooted in overlapping neural substrates. This study demonstrates that the manipulation of mere architectural space is sufficient to influence human social cognition.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: