Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Nonmuscle myosin II inhibition disrupts methamphetamine-associated memory in females and adolescents.

  • Erica J Young‎ et al.
  • Neurobiology of learning and memory‎
  • 2017‎

Memories associated with drug use can trigger strong motivation for the drug, which increases relapse vulnerability in substance use disorder (SUD). Currently there are no treatments for relapse to abuse of psychostimulants, such as methamphetamine (METH). We previously reported that storage of memories associated with METH, but not those for fear or food reward, and the concomitant spine density increase are disrupted in a retrieval-independent manner by depolymerizing actin in the basolateral amygdala complex (BLC) of adult male rats and mice. Similar results are achieved in males through intra-BLC or systemic inhibition of nonmuscle myosin II (NMII), a molecular motor that directly drives actin polymerization. Given the substantial differences in physiology between genders, we sought to determine if this immediate and selective disruption of METH-associated memory extends to adult females. A single intra-BLC infusion of the NMII inhibitor Blebbistatin (Blebb) produced a long-lasting disruption of context-induced drug seeking for at least 30days in female rats that mirrored our prior results in males. Furthermore, a single systemic injection of Blebb prior to testing disrupted METH-associated memory and the concomitant increase in BLC spine density in females. Importantly, as in males, the same manipulation had no effect on an auditory fear memory or associated BLC spine density. In addition, we established that the NMII-based disruption of METH-associated memory extends to both male and female adolescents. These findings provide further support that small molecular inhibitors of NMII have strong therapeutic potential for the prevention of relapse to METH abuse triggered by associative memories.


Prioritizing the development of mouse models for childhood brain disorders.

  • Kevin K Ogden‎ et al.
  • Neuropharmacology‎
  • 2016‎

Mutations in hundreds of genes contribute to cognitive and behavioral dysfunction associated with developmental brain disorders (DBDs). Due to the sheer number of risk factors available for study combined with the cost of developing new animal models, it remains an open question how genes should be prioritized for in-depth neurobiological investigations. Recent reviews have argued that priority should be given to frequently mutated genes commonly found in sporadic DBD patients. Intrigued by this idea, we explored to what extent "high priority" risk factors have been studied in animals in an effort to assess their potential for generating valuable preclinical models capable of advancing the neurobiological understanding of DBDs. We found that in-depth whole animal studies are lacking for many high priority genes, with relatively few neurobiological studies performed in construct valid animal models aimed at understanding the pathological substrates associated with disease phenotypes. However, some high priority risk factors have been extensively studied in animal models and they have generated novel insights into DBD patho-neurobiology while also advancing early pre-clinical therapeutic treatment strategies. We suggest that prioritizing model development toward genes frequently mutated in non-specific DBD populations will accelerate the understanding of DBD patho-neurobiology and drive novel therapeutic strategies. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.


SYNGAP1 heterozygosity disrupts sensory processing by reducing touch-related activity within somatosensory cortex circuits.

  • Sheldon D Michaelson‎ et al.
  • Nature neuroscience‎
  • 2018‎

In addition to cognitive impairments, neurodevelopmental disorders often result in sensory processing deficits. However, the biological mechanisms that underlie impaired sensory processing associated with neurodevelopmental disorders are generally understudied and poorly understood. We found that SYNGAP1 haploinsufficiency in humans, which causes a sporadic neurodevelopmental disorder defined by cognitive impairment, autistic features, and epilepsy, also leads to deficits in tactile-related sensory processing. In vivo neurophysiological analysis in Syngap1 mouse models revealed that upper-lamina neurons in somatosensory cortex weakly encode information related to touch. This was caused by reduced synaptic connectivity and impaired intrinsic excitability within upper-lamina somatosensory cortex neurons. These results were unexpected, given that Syngap1 heterozygosity is known to cause circuit hyperexcitability in brain areas more directly linked to cognitive functions. Thus, Syngap1 heterozygosity causes a range of circuit-specific pathologies, including reduced activity within cortical neurons required for touch processing, which may contribute to sensory phenotypes observed in patients.


Re-expression of SynGAP protein in adulthood improves translatable measures of brain function and behavior.

  • Thomas K Creson‎ et al.
  • eLife‎
  • 2019‎

It remains unclear to what extent neurodevelopmental disorder (NDD) risk genes retain functions into adulthood and how they may influence disease phenotypes. SYNGAP1 haploinsufficiency causes a severe NDD defined by autistic traits, cognitive impairment, and epilepsy. To determine if this gene retains therapeutically-relevant biological functions into adulthood, we performed a gene restoration technique in a mouse model for SYNGAP1 haploinsufficiency. Adult restoration of SynGAP protein improved behavioral and electrophysiological measures of memory and seizure. This included the elimination of interictal events that worsened during sleep. These events may be a biomarker for generalized cortical dysfunction in SYNGAP1 disorders because they also worsened during sleep in the human patient population. We conclude that SynGAP protein retains biological functions throughout adulthood and that non-developmental functions may contribute to disease phenotypes. Thus, treatments that target debilitating aspects of severe NDDs, such as medically-refractory seizures and cognitive impairment, may be effective in adult patients.


A simple and robust cell-based assay for the discovery of novel cytokinesis inhibitors.

  • Laszlo Radnai‎ et al.
  • Journal of biological methods‎
  • 2020‎

Cytokinesis is the last step of mitotic cell division that separates the cytoplasm of dividing cells. Small molecule inhibitors targeting either the elements of the regulatory pathways controlling cytokinesis, or the terminal effectors have been of interest as potential drug candidates for the treatment of various diseases. Here we present a detailed protocol for a cell-based cytokinesis assay that can be used for the discovery of novel cytokinesis inhibitors. The assay is performed in a 96-well plate format in 48 h. Living cells, nuclei and nuclei of dead cells are identified by a single staining step using three fluorescent dyes, followed by rapid live cell imaging. The primary signal is the nuclei-to-cell ratio (NCR). In the presence of cytokinesis inhibitors, this ratio increases over time, as the ratio of multinucleated cells increases in the population. The ratio of dead nuclei to total nuclei provides a simultaneous measure of cytotoxicity. A screening window coefficient (Z`) of 0.65 indicates that the assay is suitable for screening purposes, as the positive and negative controls are well-separated. EC50 values can be reliably determined in a single 96-well plate by using only six different compound concentrations, enabling the testing of 4 compounds per plate. An excellent test-retest reliability (R 2 = 0.998) was found for EC50 values covering a ~1500-fold range of potencies. Established small molecule inhibitors of cytokinesis operating via direct action on actin dynamics or nonmuscle myosin II are used to demonstrate the robustness, simplicity and flexibility of the assay.


Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity.

  • Antoine G Almonte‎ et al.
  • Journal of neurochemistry‎
  • 2013‎

Protease-activated receptor-1 (PAR1) is an unusual G-protein coupled receptor (GPCR) that is activated through proteolytic cleavage by extracellular serine proteases. Although previous work has shown that inhibiting PAR1 activation is neuroprotective in models of ischemia, traumatic injury, and neurotoxicity, surprisingly little is known about PAR1's contribution to normal brain function. Here, we used PAR1-/- mice to investigate the contribution of PAR1 function to memory formation and synaptic function. We demonstrate that PAR1-/- mice have deficits in hippocampus-dependent memory. We also show that while PAR1-/- mice have normal baseline synaptic transmission at Schaffer collateral-CA1 synapses, they exhibit severe deficits in N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP). Mounting evidence indicates that activation of PAR1 leads to potentiation of NMDAR-mediated responses in CA1 pyramidal cells. Taken together, this evidence and our data suggest an important role for PAR1 function in NMDAR-dependent processes subserving memory formation and synaptic plasticity.


Interaction of the N-terminal domain of the AMPA receptor GluR4 subunit with the neuronal pentraxin NP1 mediates GluR4 synaptic recruitment.

  • Gek-Ming Sia‎ et al.
  • Neuron‎
  • 2007‎

Synaptogenesis requires recruitment of neurotransmitter receptors to developing postsynaptic specializations. We developed a coculture system reconstituting artificial synapses between neurons and nonneuronal cells to investigate the molecular components required for AMPA-receptor recruitment to synapses. With this system, we find that excitatory axons specifically express factors that recruit the AMPA receptor GluR4 subunit to sites of contact between axons and GluR4-transfected nonneuronal cells. Furthermore, the N-terminal domain (NTD) of GluR4 is necessary and sufficient for its recruitment to these artificial synapses and also for GluR4 recruitment to native synapses. Moreover, we show that axonally derived neuronal pentraxins NP1 and NPR are required for GluR4 recruitment to artificial and native synapses. RNAi knockdown and knockout of the neuronal pentraxins significantly decreases GluR4 targeting to synapses. Our results indicate that NP1 and NPR secreted from presynaptic neurons bind to the GluR4 NTD and are critical trans-synaptic factors for GluR4 recruitment to synapses.


A Simple Procedure for Creating Scalable Phenotypic Screening Assays in Human Neurons.

  • BanuPriya Sridharan‎ et al.
  • Scientific reports‎
  • 2019‎

Neurons created from human induced pluripotent stem cells (hiPSCs) provide the capability of identifying biological mechanisms that underlie brain disorders. IPSC-derived human neurons, or iNs, hold promise for advancing precision medicine through drug screening, though it remains unclear to what extent iNs can support early-stage drug discovery efforts in industrial-scale screening centers. Despite several reported approaches to generate iNs from iPSCs, each suffer from technological limitations that challenge their scalability and reproducibility, both requirements for successful screening assays. We addressed these challenges by initially removing the roadblocks related to scaling of iNs for high throughput screening (HTS)-ready assays. We accomplished this by simplifying the production and plating of iNs and adapting them to a freezer-ready format. We then tested the performance of freezer-ready iNs in an HTS-amenable phenotypic assay that measured neurite outgrowth. This assay successfully identified small molecule inhibitors of neurite outgrowth. Importantly, we provide evidence that this scalable iN-based assay was both robust and highly reproducible across different laboratories. These streamlined approaches are compatible with any iPSC line that can produce iNs. Thus, our findings indicate that current methods for producing iPSCs are appropriate for large-scale drug-discovery campaigns (i.e. >10e5 compounds) that read out simple neuronal phenotypes. However, due to the inherent limitations of currently available iN differentiation protocols, technological advances are required to achieve similar scalability for screens that require more complex phenotypes related to neuronal function.


SynGAP splice variants display heterogeneous spatio-temporal expression and subcellular distribution in the developing mammalian brain.

  • Gemma Gou‎ et al.
  • Journal of neurochemistry‎
  • 2020‎

The SynGAP protein is a major regulator of synapse biology and neural circuit function. Genetic variants linked to epilepsy and intellectual disability disrupt synaptic function and neural excitability. SynGAP has been involved in multiple signaling pathways and can regulate small GTPases with very different roles. Yet, the molecular bases behind this pleiotropy are poorly understood. We hypothesize that different SynGAP isoforms will mediate different sets of functions and that deciphering their spatio-temporal expression and subcellular localization will accelerate understanding their multiple functions. Using isoform-specific antibodies recognizing SynGAP in mouse and human samples we found distinctive developmental expression patterns for all SynGAP isoforms in five mouse brain areas. Particularly noticeable was the delayed expression of SynGAP-α1 isoforms, which directly bind to postsynaptic density-95, in cortex and hippocampus during the first 2 weeks of postnatal development. Suggesting that during this period other isoforms would have a more prominent role. Furthermore, we observed subcellular localization differences between isoforms, particularly throughout postnatal development. Consistent with previous reports, SynGAP was enriched in the postsynaptic density in the mature forebrain. However, SynGAP was predominantly found in non-synaptic locations in a period of early postnatal development highly sensitive to SynGAP levels. While, α1 isoforms were always found enriched in the postsynaptic density, α2 isoforms changed from a non-synaptic to a mostly postsynaptic density localization with age and β isoforms were always found enriched in non-synaptic locations. The differential expression and subcellular distribution of SynGAP isoforms may contribute to isoform-specific regulation of small GTPases, explaining SynGAP pleiotropy.


Endogenous Syngap1 alpha splice forms promote cognitive function and seizure protection.

  • Murat Kilinc‎ et al.
  • eLife‎
  • 2022‎

Loss-of-function variants in SYNGAP1 cause a developmental encephalopathy defined by cognitive impairment, autistic features, and epilepsy. SYNGAP1 splicing leads to expression of distinct functional protein isoforms. Splicing imparts multiple cellular functions of SynGAP proteins through coding of distinct C-terminal motifs. However, it remains unknown how these different splice sequences function in vivo to regulate neuronal function and behavior. Reduced expression of SynGAP-α1/2 C-terminal splice variants in mice caused severe phenotypes, including reduced survival, impaired learning, and reduced seizure latency. In contrast, upregulation of α1/2 expression improved learning and increased seizure latency. Mice expressing α1-specific mutations, which disrupted SynGAP cellular functions without altering protein expression, promoted seizure, disrupted synapse plasticity, and impaired learning. These findings demonstrate that endogenous SynGAP isoforms with α1/2 spliced sequences promote cognitive function and impart seizure protection. Regulation of SynGAP-αexpression or function may be a viable therapeutic strategy to broadly improve cognitive function and mitigate seizure.


Bioinformatic analysis of long-lasting transcriptional and translational changes in the basolateral amygdala following acute stress.

  • Stephanie E Sillivan‎ et al.
  • PloS one‎
  • 2019‎

Stress profoundly impacts the brain and increases the risk of developing a psychiatric disorder. The brain's response to stress is mediated by a number of pathways that affect gene expression and protein function throughout the cell. Understanding how stress achieves such dramatic effects on the brain requires an understanding of the brain's stress response pathways. The majority of studies focused on molecular changes have employed repeated or chronic stress paradigms to assess the long-term consequences of stress and have not taken an integrative genomic and/or proteomic approach. Here, we determined the lasting impact of a single stressful event (restraint) on the broad molecular profile of the basolateral amygdala complex (BLC), a key brain region mediating emotion, memory and stress. Molecular profiling performed thirty days post-restraint consisted of small RNA sequencing, RNA sequencing and quantitative mass spectrometry and identified long-lasting changes in microRNA (miRNA), messenger RNA (mRNA) and proteins. Alignment of the three datasets further delineated the regulation of stress-specific pathways which were validated by qPCR and Western Blot analysis. From this analysis, mir-29a-5p was identified as a putative regulator of stress-induced adaptations in the BLC. Further, a number of predicted mir-29a-5p targets are regulated at the mRNA and protein level. The concerted and long-lasting disruption of multiple molecular pathways in the amygdala by a single stress event is expected to be sufficient to alter behavioral responses to a wide array of future experiences, including exposure to additional stressors.


Atypical Endocannabinoid Signaling Initiates a New Form of Memory-Related Plasticity at a Cortical Input to Hippocampus.

  • Weisheng Wang‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2018‎

Endocannabinoids (ECBs) depress transmitter release at sites throughout the brain. Here, we describe another form of ECB signaling that triggers a novel form of long-term potentiation (LTP) localized to the lateral perforant path (LPP) which conveys semantic information from cortex to hippocampus. Two cannabinoid CB1 receptor (CB1R) signaling cascades were identified in hippocampus. The first is pregnenolone sensitive, targets vesicular protein Munc18-1 and depresses transmitter release; this cascade is engaged by CB1Rs in Schaffer-Commissural afferents to CA1 but not in the LPP, and it does not contribute to LTP. The second cascade is pregnenolone insensitive and LPP specific; it entails co-operative CB1R/β1-integrin signaling to effect synaptic potentiation via stable enhancement of transmitter release. The latter cascade is engaged during LPP-dependent learning. These results link atypical ECB signaling to the encoding of a fundamental component of episodic memory and suggest a novel route whereby endogenous and exogenous cannabinoids affect cognition.


Basolateral Amygdala Corticotrophin Releasing Factor Receptor 2 Interacts with Nonmuscle Myosin II to Destabilize Memory.

  • Madalyn Hafenbreidel‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Inhibiting the actin motor ATPase nonmuscle myosin II (NMII) with blebbistatin (Blebb) in the basolateral amgydala (BLA) depolymerizes actin, resulting in an immediate, retrieval-independent disruption of methamphetamine (METH)-associated memory. The effect is highly selective, as NMII inhibition has no effect in other relevant brain regions (e.g. dorsal hippocampus [dPHC], nucleus accumbens [NAc]), nor does it interfere with associations for other aversive or appetitive stimuli, including cocaine (COC). To investigate a potential source of this specificity, pharmacokinetic differences in METH and COC brain exposure were examined. Replicating METH's longer half-life with COC did not render the COC association susceptible to disruption by NMII inhibition. Therefore, transcriptional differences were next assessed. Comparative RNA-seq profiling in the BLA, dHPC and NAc following METH or COC conditioning identified crhr2, which encodes the corticotrophin releasing factor receptor 2 (CRF2), as uniquely upregulated by METH in the BLA. CRF2 antagonism with Astressin-2B (AS2B) had no effect on METH-associated memory after consolidation, allowing for determination of CRF2 influences on NMII-based susceptibility after METH conditioning. Pretreatment with AS2B occluded the ability of Blebb to disrupt an established METH-associated memory. Alternatively, the Blebb-induced, retrieval-independent memory disruption seen with METH was mimicked for COC when combined with CRF2 overexpression in the BLA and its ligand, UCN3 during conditioning. These results indicate that BLA CRF2 receptor activation during learning can prevent stabilization of the actin-myosin cytoskeleton supporting the memory, rendering it vulnerable to disruption via NMII inhibition. CRF2 represents an interesting target for BLA-dependent memory destabilization via downstream effects on NMII.


Vagal sensory neurons mediate the Bezold-Jarisch reflex and induce syncope.

  • Jonathan W Lovelace‎ et al.
  • Nature‎
  • 2023‎

Visceral sensory pathways mediate homeostatic reflexes, the dysfunction of which leads to many neurological disorders1. The Bezold-Jarisch reflex (BJR), first described2,3 in 1867, is a cardioinhibitory reflex that is speculated to be mediated by vagal sensory neurons (VSNs) that also triggers syncope. However, the molecular identity, anatomical organization, physiological characteristics and behavioural influence of cardiac VSNs remain mostly unknown. Here we leveraged single-cell RNA-sequencing data and HYBRiD tissue clearing4 to show that VSNs that express neuropeptide Y receptor Y2 (NPY2R) predominately connect the heart ventricular wall to the area postrema. Optogenetic activation of NPY2R VSNs elicits the classic triad of BJR responses-hypotension, bradycardia and suppressed respiration-and causes an animal to faint. Photostimulation during high-resolution echocardiography and laser Doppler flowmetry with behavioural observation revealed a range of phenotypes reflected in clinical syncope, including reduced cardiac output, cerebral hypoperfusion, pupil dilation and eye-roll. Large-scale Neuropixels brain recordings and machine-learning-based modelling showed that this manipulation causes the suppression of activity across a large distributed neuronal population that is not explained by changes in spontaneous behavioural movements. Additionally, bidirectional manipulation of the periventricular zone had a push-pull effect, with inhibition leading to longer syncope periods and activation inducing arousal. Finally, ablating NPY2R VSNs specifically abolished the BJR. Combined, these results demonstrate a genetically defined cardiac reflex that recapitulates characteristics of human syncope at physiological, behavioural and neural network levels.


The role of nonmuscle myosin II in polydrug memories and memory reconsolidation.

  • Sherri B Briggs‎ et al.
  • Learning & memory (Cold Spring Harbor, N.Y.)‎
  • 2018‎

Using pharmacologic and genetic approaches targeting actin or the actin-driving molecular motor, nonmuscle myosin II (NMII), we previously discovered an immediate, retrieval-independent, and long-lasting disruption of methamphetamine- (METH-) and amphetamine-associated memories. A single intrabasolateral amygdala complex infusion or systemic administration of the NMII inhibitor Blebbistatin (Blebb) is sufficient to produce this disruption, which is selective, having no retrieval-independent effect on memories for fear, food reward, cocaine, or morphine. However, it was unclear if Blebb treatment would disrupt memories of other stimulants and amphetamine class drugs, such as nicotine (NIC) or mephedrone (MEPH; bath salts). Moreover, many individuals abuse multiple drugs, but it was unknown if Blebb could disrupt polydrug memories, or if the inclusion of another substance would render Blebb no longer able to disrupt METH-associated memories. Therefore, the present study had two primary goals: (1) to determine the ability of Blebb to disrupt NIC- or MEPH-associated memories, and (2) to determine the ability of METH to modify other unconditioned stimulus (US) associations' susceptibility to Blebb. To this end, using the conditional place preference model, mice were conditioned to NIC and MEPH alone or METH in combination with NIC, morphine, or foot shock. We report that, unlike METH, there was no retrieval-independent effect of Blebb on NIC- or MEPH-associated memories. However, similar to cocaine, reconsolidation of the memory for both drugs was disrupted. Further, when combined with METH administration, NIC- and morphine-, but not fear-, associated memories were rendered susceptible to disruption by Blebb. Given the high rate of polydrug use and the resurgence of METH use, these results have important implications for the treatment of substance use disorder.


MicroRNA regulation of persistent stress-enhanced memory.

  • Stephanie E Sillivan‎ et al.
  • Molecular psychiatry‎
  • 2020‎

Disruption of persistent, stress-associated memories is relevant for treating posttraumatic stress disorder (PTSD) and related syndromes, which develop in a subset of individuals following a traumatic event. We previously developed a stress-enhanced fear learning (SEFL) paradigm in inbred mice that produces PTSD-like characteristics in a subset of mice, including persistently enhanced memory and heightened cFos in the basolateral amygdala complex (BLC) with retrieval of the remote (30-day-old) stress memory. Here, the contribution of BLC microRNAs (miRNAs) to stress-enhanced memory was investigated because of the molecular complexity they achieve through their ability to regulate multiple targets simultaneously. We performed small-RNA sequencing (smRNA-Seq) and quantitative proteomics on BLC tissue collected from mice 1 month after SEFL and identified persistently changed microRNAs, including mir-135b-5p, and proteins associated with PTSD-like heightened fear expression. Viral-mediated overexpression of mir-135b-5p in the BLC of stress-resilient animals enhanced remote fear memory expression and promoted spontaneous renewal 14 days after extinction. Conversely, inhibition of BLC mir-135b-5p in stress-susceptible animals had the opposite effect, promoting a resilient-like phenotype. mir-135b-5p is highly conserved across mammals and was detected in post mortem human amygdala, as well as human serum samples. The mir-135b passenger strand, mir-135b-3p, was significantly elevated in serum from PTSD military veterans, relative to combat-exposed control subjects. Thus, miR-135b-5p may be an important therapeutic target for dampening persistent, stress-enhanced memory and its passenger strand a potential biomarker for responsivity to a mir-135-based therapeutic.


microRNA mir-598-3p mediates susceptibility to stress enhancement of remote fear memory.

  • Meghan E Jones‎ et al.
  • Learning & memory (Cold Spring Harbor, N.Y.)‎
  • 2019‎

microRNAs (miRNAs) have emerged as potent regulators of learning, recent memory, and extinction. However, our understanding of miRNAs directly involved in regulating complex psychiatric conditions perpetuated by aberrant memory, such as in posttraumatic stress disorder (PTSD), remains limited. To begin to address the role of miRNAs in persistent memories, we performed small-RNA sequencing on basolateral amygdala (BLA) tissue and identified miRNAs altered by auditory fear conditioning (FC) one month after training. mir-598-3p, a highly conserved miRNA previously unstudied in the brain, was down-regulated in the BLA. Further decreasing BLA mir-598-3p levels did not increase strength of the remote fear memory. Given that stress is a critical component in PTSD, we next assessed the impact of stress and stress-enhanced fear learning (SEFL) on mir-598-3p levels, finding the miRNA is elevated in the BLA of male, but not female, mice susceptible to the effects of stress in SEFL. Accordingly, intra-BLA inhibition of mir-598-3p interfered with expression and extinction of the remote fear memory in male, but not female, mice. This effect could not be attributed to an anxiolytic effect of miRNA inhibition. Finally, bioinformatic analysis following quantitative proteomics on BLA tissue collected 30 d post-SEFL training identified putative mir-598-3p targets and related pathways mediating the differential susceptibility, with evidence for regulation of the actin cytoskeleton, the core mediator of structural plasticity. Taken together, the results suggest BLA mir-598-3p may be recruited by stress to mediate a critical switch from a salient remote fear memory to one that is enhanced and extinction-resistant.


Input-specific regulation of hippocampal circuit maturation by non-muscle myosin IIB.

  • Emin D Ozkan‎ et al.
  • Journal of neurochemistry‎
  • 2015‎

Myh9 and Myh10, which encode two major isoforms of non-muscle myosin II expressed in the brain, have emerged as risk factors for developmental brain disorders. Myosin II motors regulate neuronal cytoskeletal dynamics leading to optimization of synaptic plasticity and memory formation. However, the role of these motor complexes in brain development remains poorly understood. Here, we disrupted the in vivo expression of Myh9 and/or Myh10 in developing hippocampal neurons to determine how these motors contribute to circuit maturation in this brain area important for cognition. We found that Myh10 ablation in early postnatal, but not mature, CA1 pyramidal neurons reduced excitatory synaptic function in the Schaffer collateral pathway, whereas more distal inputs to CA1 neurons were relatively unaffected. Myh10 ablation in young neurons also selectively impaired the elongation of oblique dendrites that receive Schaffer collateral inputs, whereas the structure of distal dendrites was normal. We observed normal spine density and spontaneous excitatory currents in these neurons, indicating that Myh10 KO impaired proximal pathway synaptic maturation through disruptions to dendritic development rather than post-synaptic strength or spine morphogenesis. To address possible redundancy and/or compensation by other Myosin II motors expressed in neurons, we performed similar experiments in Myh9 null neurons. In contrast to findings in Myh10 mutants, evoked synaptic function in young Myh9 KO hippocampal neurons was normal. Data obtained from double Myh9/Myh10 KO neurons largely resembled the MyH10 KO synaptic phenotype. These data indicate that Myosin IIB is a key molecular factor that guides input-specific circuit maturation in the developing hippocampus. Non-muscle myosin II is an actin binding protein with three isoforms in the brain (IIA, IIB and IIC) encoded by the myh9, myh10, and myh14 genes in mice, respectively. We have studied the structure and the function of hippocampal CA1 neurons missing NMIIB and/or NMIIA proteins at different times during development. We have discovered that NMIIB is the major isoform regulating Schaffer collateral inputs, and that this regulation is restricted to early postnatal development.


Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses.

  • James P Clement‎ et al.
  • Cell‎
  • 2012‎

Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, whereas repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: