2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 45 papers

Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase.

  • Saswata Talukdar‎ et al.
  • Nature medicine‎
  • 2012‎

Chronic low-grade adipose tissue and liver inflammation is a major cause of systemic insulin resistance and is a key component of the low degree of insulin sensitivity that exists in obesity and type 2 diabetes. Immune cells, such as macrophages, T cells, B cells, mast cells and eosinophils, have all been implicated as having a role in this process. Neutrophils are typically the first immune cells to respond to inflammation and can exacerbate the chronic inflammatory state by helping to recruit macrophages and by interacting with antigen-presenting cells. Neutrophils secrete several proteases, one of which is neutrophil elastase, which can promote inflammatory responses in several disease models. Here we show that treatment of hepatocytes with neutrophil elastase causes cellular insulin resistance and that deletion of neutrophil elastase in high-fat-diet–induced obese (DIO) mice leads to less tissue inflammation that is associated with lower adipose tissue neutrophil and macrophage content. These changes are accompanied by improved glucose tolerance and increased insulin sensitivity. Taken together, we show that neutrophils can be added to the extensive repertoire of immune cells that participate in inflammation-induced metabolic disease.


LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes.

  • Pingping Li‎ et al.
  • Nature medicine‎
  • 2015‎

Insulin resistance results from several pathophysiologic mechanisms, including chronic tissue inflammation and defective insulin signaling. We found that liver, muscle and adipose tissue exhibit higher levels of the chemotactic eicosanoid LTB4 in obese high-fat diet (HFD)-fed mice. Inhibition of the LTB4 receptor Ltb4r1, through either genetic or pharmacologic loss of function, led to an anti-inflammatory phenotype with protection from insulin resistance and hepatic steatosis. In vitro treatment with LTB4 directly enhanced macrophage chemotaxis, stimulated inflammatory pathways, reduced insulin-stimulated glucose uptake in L6 myocytes, and impaired insulin-mediated suppression of hepatic glucose output in primary mouse hepatocytes. This was accompanied by lower insulin-stimulated Akt phosphorylation and higher Irs-1/2 serine phosphorylation, and all of these events were dependent on Gαi and Jnk1, two downstream mediators of Ltb4r1 signaling. These observations elucidate a novel role of the LTB4-Ltb4r1 signaling pathway in hepatocyte and myocyte insulin resistance, and they show that in vivo inhibition of Ltb4r1 leads to robust insulin-sensitizing effects.


Increased macrophage migration into adipose tissue in obese mice.

  • Da Young Oh‎ et al.
  • Diabetes‎
  • 2012‎

Macrophage-mediated inflammation is a key component of insulin resistance; however, the initial events of monocyte migration to become tissue macrophages remain poorly understood. We report a new method to quantitate in vivo macrophage tracking (i.e., blood monocytes from donor mice) labeled ex vivo with fluorescent PKH26 dye and injected into recipient mice. Labeled monocytes appear as adipose, liver, and splenic macrophages, peaking in 1-2 days. When CCR2 KO monocytes are injected into wild-type (WT) recipients, or WT monocytes given to MCP-1 KO recipients, adipose tissue macrophage (ATM) accumulation is reduced by ~40%, whereas hepatic macrophage content is decreased by ~80%. Using WT donor cells, ATM accumulation is several-fold greater in obese recipient mice compared with lean mice, regardless of the source of donor monocytes. After their appearance in adipose tissue, ATMs progressively polarize from the M2- to the M1-like state in obesity. In summary, the CCR2/MCP-1 system is a contributory factor to monocyte migration into adipose tissue and is the dominant signal controlling the appearance of recruited macrophages in the liver. Monocytes from obese mice are not programmed to become inflammatory ATMs but rather the increased proinflammatory ATM accumulation in obesity is in response to tissue signals.


Restoration of euglycemia after duodenal bypass surgery is reliant on central and peripheral inputs in Zucker fa/fa rats.

  • Jian Jiao‎ et al.
  • Diabetes‎
  • 2013‎

Gastrointestinal bypass surgeries that result in rerouting and subsequent exclusion of nutrients from the duodenum appear to rapidly alleviate hyperglycemia and hyperinsulinemia independent of weight loss. While the mechanism(s) responsible for normalization of glucose homeostasis remains to be fully elucidated, this rapid normalization coupled with the well-known effects of vagal inputs into glucose homeostasis suggests a neurohormonally mediated mechanism. Our results show that duodenal bypass surgery on obese, insulin-resistant Zucker fa/fa rats restored insulin sensitivity in both liver and peripheral tissues independent of body weight. Restoration of normoglycemia was attributable to an enhancement in key insulin-signaling molecules, including insulin receptor substrate-2, and substrate metabolism through a multifaceted mechanism involving activation of AMP-activated protein kinase and downregulation of key regulatory genes involved in both lipid and glucose metabolism. Importantly, while central nervous system-derived vagal nerves were not essential for restoration of insulin sensitivity, rapid normalization in hepatic gluconeogenic capacity and basal hepatic glucose production required intact vagal innervation. Lastly, duodenal bypass surgery selectively altered the tissue concentration of intestinally derived glucoregulatory hormone peptides in a segment-specific manner. The present data highlight and support the significance of vagal inputs and intestinal hormone peptides toward normalization of glucose and lipid homeostasis after duodenal bypass surgery.


An inhibitor of the protein kinases TBK1 and IKK-ɛ improves obesity-related metabolic dysfunctions in mice.

  • Shannon M Reilly‎ et al.
  • Nature medicine‎
  • 2013‎

Emerging evidence suggests that inflammation provides a link between obesity and insulin resistance. The noncanonical IκB kinases IKK-ɛ and TANK-binding kinase 1 (TBK1) are induced in liver and fat by NF-κB activation upon high-fat diet feeding and in turn initiate a program of counterinflammation that preserves energy storage. Here we report that amlexanox, an approved small-molecule therapeutic presently used in the clinic to treat aphthous ulcers and asthma, is an inhibitor of these kinases. Treatment of obese mice with amlexanox elevates energy expenditure through increased thermogenesis, producing weight loss, improved insulin sensitivity and decreased steatosis. Because of its record of safety in patients, amlexanox may be an interesting candidate for clinical evaluation in the treatment of obesity and related disorders.


SirT1 regulates adipose tissue inflammation.

  • Matthew P Gillum‎ et al.
  • Diabetes‎
  • 2011‎

Macrophage recruitment to adipose tissue is a reproducible feature of obesity. However, the events that result in chemokine production and macrophage recruitment to adipose tissue during states of energetic excess are not clear. Sirtuin 1 (SirT1) is an essential nutrient-sensing histone deacetylase, which is increased by caloric restriction and reduced by overfeeding. We discovered that SirT1 depletion causes anorexia by stimulating production of inflammatory factors in white adipose tissue and thus posit that decreases in SirT1 link overnutrition and adipose tissue inflammation.


Inverse regulation of inflammation and mitochondrial function in adipose tissue defines extreme insulin sensitivity in morbidly obese patients.

  • Mohammed Qatanani‎ et al.
  • Diabetes‎
  • 2013‎

Obesity is associated with insulin resistance, a major risk factor for type 2 diabetes and cardiovascular disease. However, not all obese individuals are insulin resistant, which confounds our understanding of the mechanistic link between these conditions. We conducted transcriptome analyses on 835 obese subjects with mean BMI of 48.8, on which we have previously reported genetic associations of gene expression. Here, we selected ~320 nondiabetic (HbA(1c) <7.0) subjects and further stratified the cohort into insulin-resistant versus insulin-sensitive subgroups based on homeostasis model assessment-insulin resistance. An unsupervised informatics analysis revealed that immune response and inflammation-related genes were significantly downregulated in the omental adipose tissue of obese individuals with extreme insulin sensitivity and, to a much lesser extent, in subcutaneous adipose tissue. In contrast, genes related to β-oxidation and the citric acid cycle were relatively overexpressed in adipose of insulin-sensitive patients. These observations were verified by querying an independent cohort of our published dataset of 37 subjects whose subcutaneous adipose tissue was sampled before and after treatment with thiazolidinediones. Whereas the immune response and inflammation pathway genes were downregulated by thiazolidinedione treatment, β-oxidation and citric acid cycle genes were upregulated. This work highlights the critical role that omental adipose inflammatory pathways might play in the pathophysiology of insulin resistance, independent of body weight.


Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice.

  • Maziyar Saberi‎ et al.
  • Cell metabolism‎
  • 2009‎

Chronic low-grade inflammation, particularly in adipose tissue, is an important modulator of obesity-induced insulin resistance. The Toll-like receptor 4 (Tlr4) is a key initiator of inflammatory responses in macrophages. We performed bone marrow transplantation (BMT) of Tlr4lps-del or control C57Bl/10J donor cells into irradiated wild-type C57Bl6 recipient mice to generate hematopoietic cell-specific Tlr4 deletion mutant (BMT-Tlr4(-/-)) and control (BMT-WT) mice. After 16 weeks of a high-fat diet (HFD), BMT-WT mice developed obesity, hyperinsulinemia, glucose intolerance, and insulin resistance. In contrast, BMT-Tlr4(-/-) mice became obese but did not develop fasting hyperinsulinemia and had improved hepatic and adipose insulin sensitivity during euglycemic clamp studies, compared to HFD BMT-WT controls. HFD BMT-Tlr4(-/-) mice also showed markedly reduced adipose tissue inflammatory markers and macrophage content. In summary, our results indicate that Tlr4 signaling in hematopoietic-derived cells is important for the development of hepatic and adipose tissue insulin resistance in obese mice.


Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance.

  • Pingping Li‎ et al.
  • Cell‎
  • 2016‎

In obesity, macrophages and other immune cells accumulate in insulin target tissues, promoting a chronic inflammatory state and insulin resistance. Galectin-3 (Gal3), a lectin mainly secreted by macrophages, is elevated in both obese subjects and mice. Administration of Gal3 to mice causes insulin resistance and glucose intolerance, whereas inhibition of Gal3, through either genetic or pharmacologic loss of function, improved insulin sensitivity in obese mice. In vitro treatment with Gal3 directly enhanced macrophage chemotaxis, reduced insulin-stimulated glucose uptake in myocytes and 3T3-L1 adipocytes and impaired insulin-mediated suppression of glucose output in primary mouse hepatocytes. Importantly, we found that Gal3 can bind directly to the insulin receptor (IR) and inhibit downstream IR signaling. These observations elucidate a novel role for Gal3 in hepatocyte, adipocyte, and myocyte insulin resistance, suggesting that Gal3 can link inflammation to decreased insulin sensitivity. Inhibition of Gal3 could be a new approach to treat insulin resistance.


Positive Reinforcing Mechanisms between GPR120 and PPARγ Modulate Insulin Sensitivity.

  • Vivian A Paschoal‎ et al.
  • Cell metabolism‎
  • 2020‎

G protein-coupled receptor 120 (GPR120) and PPARγ agonists each have insulin sensitizing effects. But whether these two pathways functionally interact and can be leveraged together to markedly improve insulin resistance has not been explored. Here, we show that treatment with the PPARγ agonist rosiglitazone (Rosi) plus the GPR120 agonist Compound A leads to additive effects to improve glucose tolerance and insulin sensitivity, but at lower doses of Rosi, thus avoiding its known side effects. Mechanistically, we show that GPR120 is a PPARγ target gene in adipocytes, while GPR120 augments PPARγ activity by inducing the endogenous ligand 15d-PGJ2 and by blocking ERK-mediated inhibition of PPARγ. Further, we used macrophage- (MKO) or adipocyte-specific GPR120 KO (AKO) mice to show that GRP120 has anti-inflammatory effects via macrophages while working with PPARγ in adipocytes to increase insulin sensitivity. These results raise the prospect of a safer way to increase insulin sensitization in the clinic.


Cancer-cell-secreted extracellular vesicles suppress insulin secretion through miR-122 to impair systemic glucose homeostasis and contribute to tumour growth.

  • Minghui Cao‎ et al.
  • Nature cell biology‎
  • 2022‎

Epidemiological studies demonstrate an association between breast cancer (BC) and systemic dysregulation of glucose metabolism. However, how BC influences glucose homeostasis remains unknown. We show that BC-derived extracellular vesicles (EVs) suppress pancreatic insulin secretion to impair glucose homeostasis. EV-encapsulated miR-122 targets PKM in β-cells to suppress glycolysis and ATP-dependent insulin exocytosis. Mice receiving high-miR-122 EVs or bearing BC tumours exhibit suppressed insulin secretion, enhanced endogenous glucose production, impaired glucose tolerance and fasting hyperglycaemia. These effects contribute to tumour growth and are abolished by inhibiting EV secretion or miR-122, restoring PKM in β-cells or supplementing insulin. Compared with non-cancer controls, patients with BC have higher levels of circulating EV-encapsulated miR-122 and fasting glucose concentrations but lower fasting insulin; miR-122 levels are positively associated with glucose and negatively associated with insulin. Therefore, EV-mediated impairment of whole-body glycaemic control may contribute to tumour progression and incidence of type 2 diabetes in some patients with BC.


Hepatocyte-derived exosomes from early onset obese mice promote insulin sensitivity through miR-3075.

  • Yudong Ji‎ et al.
  • Nature metabolism‎
  • 2021‎

In chronic obesity, hepatocytes become insulin resistant and exert important effects on systemic metabolism. Here we show that in early onset obesity (4 weeks high-fat diet), hepatocytes secrete exosomes that enhance insulin sensitivity both in vitro and in vivo. These beneficial effects were due to exosomal microRNA miR-3075, which is enriched in these hepatocyte exosomes. FA2H is a direct target of miR-3075 and small interfering RNA depletion of FA2H in adipocytes, myocytes and primary hepatocytes leads to increased insulin sensitivity. In chronic obesity (16-18 weeks of a high-fat diet), hepatocyte exosomes promote a state of insulin resistance. These chronic obese hepatocyte exosomes do not directly cause impaired insulin signalling in vitro but do promote proinflammatory activation of macrophages. Taken together, these studies show that in early onset obesity, hepatocytes produce exosomes that express high levels of the insulin-sensitizing miR-3075. In chronic obesity, this compensatory effect is lost and hepatocyte-derived exosomes from chronic obese mice promote insulin resistance.


NCoR repression of LXRs restricts macrophage biosynthesis of insulin-sensitizing omega 3 fatty acids.

  • Pingping Li‎ et al.
  • Cell‎
  • 2013‎

Macrophage-mediated inflammation is a major contributor to obesity-associated insulin resistance. The corepressor NCoR interacts with inflammatory pathway genes in macrophages, suggesting that its removal would result in increased activity of inflammatory responses. Surprisingly, we find that macrophage-specific deletion of NCoR instead results in an anti-inflammatory phenotype along with robust systemic insulin sensitization in obese mice. We present evidence that derepression of LXRs contributes to this paradoxical anti-inflammatory phenotype by causing increased expression of genes that direct biosynthesis of palmitoleic acid and ω3 fatty acids. Remarkably, the increased ω3 fatty acid levels primarily inhibit NF-κB-dependent inflammatory responses by uncoupling NF-κB binding and enhancer/promoter histone acetylation from subsequent steps required for proinflammatory gene activation. This provides a mechanism for the in vivo anti-inflammatory insulin-sensitive phenotype observed in mice with macrophage-specific deletion of NCoR. Therapeutic methods to harness this mechanism could lead to a new approach to insulin-sensitizing therapies.


Neuronal SIRT1 Regulates Metabolic and Reproductive Function and the Response to Caloric Restriction.

  • Emily Rickert‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

Sirt1 is an NAD-dependent, class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. In this study, we generated mice expressing an enzymatically inactive form (N-MUT) or wild-type (WT) SIRT1 (N-OX) in mature neurons. N-OX male and female mice had impaired glucose tolerance, and N-MUT female, but not male, mice had improved glucose tolerance compared with that of WT littermates. Furthermore, glucose tolerance was improved in all mice with caloric restriction (CR) but was greater in the N-OX mice, who had better glucose tolerance than their littermates. At the reproductive level, N-OX females had impaired estrous cycles, with increased cycle length and more time in estrus. LH and progesterone surges were absent on the evening of proestrus in the N-OX mice, suggesting a defect in spontaneous ovulation, which was confirmed by the ovarian histology revealing fewer corpora lutea. Despite this defect, the mice were still fertile when mated to WT mice on the day of proestrus, indicating that the mice could respond to normal pheromonal or environmental cues. When subjected to CR, the N-OX mice went into diestrus arrest earlier than their littermates. Together, these results suggested that the overexpression of SIRT1 rendered the mice more sensitive to the metabolic improvements and suppression of reproductive cycles by CR, which was independent of circadian rhythms.


Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMP-activated protein kinase suppression.

  • Yosuke Osawa‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2011‎

Acid sphingomyelinase (ASM) regulates the homeostasis of sphingolipids, including ceramides and sphingosine-1-phosphate (S1P). Because sphingolipids regulate AKT activation, we investigated the role of ASM in hepatic glucose and lipid metabolism. Initially, we overexpressed ASM in the livers of wild-type and diabetic db/db mice by adenovirus vector (Ad5ASM). In these mice, glucose tolerance was improved, and glycogen and lipid accumulation in the liver were increased. Using primary cultured hepatocytes, we confirmed that ASM increased glucose uptake, glycogen deposition, and lipid accumulation through activation of AKT and glycogen synthase kinase-3β. In addition, ASM induced up-regulation of glucose transporter 2 accompanied by suppression of AMP-activated protein kinase (AMPK) phosphorylation. Loss of sphingosine kinase-1 (SphK1) diminished ASM-mediated AKT phosphorylation, but exogenous S1P induced AKT activation in hepatocytes. In contrast, SphK1 deficiency did not affect AMPK activation. These results suggest that the SphK/S1P pathway is required for ASM-mediated AKT activation but not for AMPK inactivation. Finally, we found that treatment with high-dose glucose increased glycogen deposition and lipid accumulation in wild-type hepatocytes but not in ASM(-/-) cells. This result is consistent with glucose intolerance in ASM(-/-) mice. In conclusion, ASM modulates AKT activation and AMPK inactivation, thus regulating glucose and lipid metabolism in the liver.


FoxO1 haploinsufficiency protects against high-fat diet-induced insulin resistance with enhanced peroxisome proliferator-activated receptor gamma activation in adipose tissue.

  • Jane J Kim‎ et al.
  • Diabetes‎
  • 2009‎

Forkhead box O (FoxO) transcription factors represent evolutionarily conserved targets of insulin signaling, regulating metabolism and cellular differentiation in response to changes in nutrient availability. Although the FoxO1 isoform is known to play a key role in adipogenesis, its physiological role in differentiated adipose tissue remains unclear.


GPR43 Potentiates β-Cell Function in Obesity.

  • Joanne C McNelis‎ et al.
  • Diabetes‎
  • 2015‎

The intestinal microbiome can regulate host energy homeostasis and the development of metabolic disease. Here we identify GPR43, a receptor for bacterially produced short-chain fatty acids (SCFAs), as a modulator of microbiota-host interaction. β-Cell expression of GPR43 and serum levels of acetate, an endogenous SCFA, are increased with a high-fat diet (HFD). HFD-fed GPR43 knockout (KO) mice develop glucose intolerance due to a defect in insulin secretion. In vitro treatment of isolated murine islets, human islets, and Min6 cells with (S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butanamide (PA), a specific agonist of GPR43, increased intracellular inositol triphosphate and Ca(2+) levels, and potentiated insulin secretion in a GPR43-, Gαq-, and phospholipase C-dependent manner. In addition, KO mice fed an HFD displayed reduced β-cell mass and expression of differentiation genes, and the treatment of Min6 cells with PA increased β-cell proliferation and gene expression. Together these findings identify GPR43 as a potential target for therapeutic intervention.


Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet.

  • James P Kesby‎ et al.
  • PloS one‎
  • 2015‎

Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions.


p75 Neurotrophin Receptor Regulates Energy Balance in Obesity.

  • Bernat Baeza-Raja‎ et al.
  • Cell reports‎
  • 2016‎

Obesity and metabolic syndrome reflect the dysregulation of molecular pathways that control energy homeostasis. Here, we show that the p75 neurotrophin receptor (p75(NTR)) controls energy expenditure in obese mice on a high-fat diet (HFD). Despite no changes in food intake, p75(NTR)-null mice were protected from HFD-induced obesity and remained lean as a result of increased energy expenditure without developing insulin resistance or liver steatosis. p75(NTR) directly interacts with the catalytic subunit of protein kinase A (PKA) and regulates cAMP signaling in adipocytes, leading to decreased lipolysis and thermogenesis. Adipocyte-specific depletion of p75(NTR) or transplantation of p75(NTR)-null white adipose tissue (WAT) into wild-type mice fed a HFD protected against weight gain and insulin resistance. Our results reveal that signaling from p75(NTR) to cAMP/PKA regulates energy balance and suggest that non-CNS neurotrophin receptor signaling could be a target for treating obesity and the metabolic syndrome.


Quantitative proteomic and functional analysis of liver mitochondria from high fat diet (HFD) diabetic mice.

  • Yurong Guo‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2013‎

Insulin resistance plays a major role in the development of type 2 diabetes and obesity and affects a number of biological processes such as mitochondrial biogenesis. Though mitochondrial dysfunction has been linked to the development of insulin resistance and pathogenesis of type 2 diabetes, the precise mechanism linking the two is not well understood. We used high fat diet (HFD)-induced obesity dependent diabetes mouse models to gain insight into the potential pathways altered with metabolic disease, and carried out quantitative proteomic analysis of liver mitochondria. As previously reported, proteins involved in fatty acid oxidation, branched chain amino acid degradation, tricarboxylic acid cycle, and oxidative phosphorylation were uniformly up-regulated in the liver of HFD fed mice compared with that of normal diet. Further, our studies revealed that retinol metabolism is distinctly down-regulated and the mitochondrial structural proteins-components of mitochondrial inter-membrane space bridging (MIB) complex (Mitofilin, Sam50, and ChChd3), and Tim proteins-essential for protein import, are significantly up-regulated in HFD fed mice. Structural and functional studies on HFD and normal diet liver mitochondria revealed remodeling of HFD mitochondria to a more condensed form with increased respiratory capacity and higher ATP levels compared with normal diet mitochondria. Thus, it is likely that the structural remodeling is essential to accommodate the increased protein content in presence of HFD: the mechanism could be through the MIB complex promoting contact site and crista junction formation and in turn facilitating the lipid and protein uptake.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: