2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Myeloid-derived suppressor cells control B cell accumulation in the central nervous system during autoimmunity.

  • Benjamin Knier‎ et al.
  • Nature immunology‎
  • 2018‎

Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) have been characterized in the context of malignancies. Here we show that PMN-MDSCs can restrain B cell accumulation during central nervous system (CNS) autoimmunity. Ly6G+ cells were recruited to the CNS during experimental autoimmune encephalomyelitis (EAE), interacted with B cells that produced the cytokines GM-CSF and interleukin-6 (IL-6), and acquired properties of PMN-MDSCs in the CNS in a manner dependent on the signal transducer STAT3. Depletion of Ly6G+ cells or dysfunction of Ly6G+ cells through conditional ablation of STAT3 led to the selective accumulation of GM-CSF-producing B cells in the CNS compartment, which in turn promoted an activated microglial phenotype and lack of recovery from EAE. The frequency of CD138+ B cells in the cerebrospinal fluid (CSF) of human subjects with multiple sclerosis was negatively correlated with the frequency of PMN-MDSCs in the CSF. Thus PMN-MDSCs might selectively control the accumulation and cytokine secretion of B cells in the inflamed CNS.


Presence of entry receptors and viral markers suggest a low level of placental replication of hepatitis B virus in a proportion of pregnant women infected with chronic hepatitis B.

  • Garima Garg‎ et al.
  • Scientific reports‎
  • 2022‎

The transplacental route of vertical transmission of Hepatitis B Virus (HBV) has been known for over a decade. Here we present evidence which suggest HBV can replicate in placenta. Forty-one HBsAg positive and 10 control pregnant women were enrolled in the study after obtaining informed consent. HBV positives were further divided in the High Viral Load (HVL) Group and Low Viral Load (LVL) Group according to INASL guidelines 2018. The Presence of the HBV DNA and expression of NTCP in the placenta was analyzed by qPCR/RT-qPCR and/or immunohistochemistry (IHC). The presence of cccDNA was assessed using Digital Droplet PCR while the presence of pre-genomic (pg) RNA was assessed through qRT-PCR and sequencing. The presence of HBeAg and HBcAg in the placenta was assessed by IHC. Immunostaining of NTCP, HBeAg and HBcAg on trophoblasts along with the presence of total HBV DNA, cccDNA and pgRNA indicated, that these cells are not only susceptible to HBV infection but may also support viral replication. This is further supported by the finding that trophoblasts of the several HBeAg seronegative samples harbored the HBeAg. Although, we did not find any correlation in NTCP expression and viral markers with viral load indicates placental replication may not aping hepatocytes. The presence of the HBV receptor, NTCP along with the presence of cccDNA, pgRNA, and HBeAg in placenta of HBV infected females without circulating HBeAg suggest that placenta act as a replication host.


Point Prevalence Surveys of Antimicrobial Use among Hospitalized Children in Six Hospitals in India in 2016.

  • Sumanth Gandra‎ et al.
  • Antibiotics (Basel, Switzerland)‎
  • 2017‎

The prevalence of antimicrobial resistance in India is among the highest in the world. Antimicrobial use in inpatient settings is an important driver of resistance, but is poorly characterized, particularly in hospitalized children. In this study, conducted as part of the Global Antimicrobial Resistance, Prescribing, and Efficacy in Neonates and Children (GARPEC) project, we examined the prevalence of and indications of antimicrobial use, as well as antimicrobial agents used among hospitalized children by conducting four point prevalence surveys in six hospitals between February 2016 and February 2017. A total of 681 children were hospitalized in six hospitals across all survey days, and 419 (61.5%) were prescribed one or more antimicrobials (antibacterials, antivirals, antifungals). Antibacterial agents accounted for 90.8% (547/602) of the total antimicrobial prescriptions, of which third-generation cephalosporins (3GCs) accounted for 38.9% (213/547) and penicillin plus enzyme inhibitor combinations accounted for 14.4% (79/547). Lower respiratory tract infection (LRTI) was the most common indication for prescribing antimicrobials (149 prescriptions; 24.8%). Although national guidelines recommend the use of penicillin and combinations as first-line agents for LRTI, 3GCs were the most commonly prescribed antibacterial agents (55/149 LRTI prescriptions; 36.9%). In conclusion, 61.5% of hospitalized children were on at least one antimicrobial agent, with excessive use of 3GCs. Hence there is an opportunity to limit their inappropriate use.


Skin and gut imprinted helper T cell subsets exhibit distinct functional phenotypes in central nervous system autoimmunity.

  • Michael Hiltensperger‎ et al.
  • Nature immunology‎
  • 2021‎

Multidimensional single-cell analyses of T cells have fueled the debate about whether there is extensive plasticity or 'mixed' priming of helper T cell subsets in vivo. Here, we developed an experimental framework to probe the idea that the site of priming in the systemic immune compartment is a determinant of helper T cell-induced immunopathology in remote organs. By site-specific in vivo labeling of antigen-specific T cells in inguinal (i) or gut draining mesenteric (m) lymph nodes, we show that i-T cells and m-T cells isolated from the inflamed central nervous system (CNS) in a model of multiple sclerosis (MS) are distinct. i-T cells were Cxcr6+, and m-T cells expressed P2rx7. Notably, m-T cells infiltrated white matter, while i-T cells were also recruited to gray matter. Therefore, we propose that the definition of helper T cell subsets by their site of priming may guide an advanced understanding of helper T cell biology in health and disease.


Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation.

  • Garima Garg‎ et al.
  • Cell reports‎
  • 2019‎

Foxp3+ regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and "toxic" gain-of-function of Treg cells in the inflamed CNS. Blimp1 negatively regulates IL-6- and STAT3-dependent Dnmt3a expression and function restraining methylation of Treg cell-specific conserved non-coding sequence 2 (CNS2) in the Foxp3 locus. Consequently, CNS2 is heavily methylated when Blimp1 is ablated, leading to a loss of Foxp3 expression and severe disease. These findings identify a Blimp1-dependent pathway that preserves Treg cell stability in inflamed non-lymphoid tissues.


Unique properties of thymic antigen-presenting cells promote epigenetic imprinting of alloantigen-specific regulatory T cells.

  • Garima Garg‎ et al.
  • Oncotarget‎
  • 2017‎

Regulatory T cells (Tregs) are potential immunotherapeutic candidates to induce transplantation tolerance. However, stability of Tregs still remains contentious and may potentially restrict their clinical use. Recent work suggested that epigenetic imprinting of Foxp3 and other Treg-specific signature genes is crucial for stabilization of immunosuppressive properties of Foxp3+ Tregs, and that these events are initiated already during early stages of thymic Treg development. However, the mechanisms governing this process remain largely unknown. Here we demonstrate that thymic antigen-presenting cells (APCs), including thymic dendritic cells (t-DCs) and medullary thymic epithelial cells (mTECs), can induce a more pronounced demethylation of Foxp3 and other Treg-specific epigenetic signature genes in developing Tregs when compared to splenic DCs (sp-DCs). Transcriptomic profiling of APCs revealed differential expression of secreted factors and costimulatory molecules, however neither addition of conditioned media nor interference with costimulatory signals affected Foxp3 induction by thymic APCs in vitro. Importantly, when tested in vivo both mTEC- and t-DC-generated alloantigen-specific Tregs displayed significantly higher efficacy in prolonging skin allograft acceptance when compared to Tregs generated by sp-DCs. Our results draw attention to unique properties of thymic APCs in initiating commitment towards stable and functional Tregs, a finding that could be highly beneficial in clinical immunotherapy.


Gut Dysbiosis and IL-21 Response in Patients with Severe COVID-19.

  • Mahejibin Khan‎ et al.
  • Microorganisms‎
  • 2021‎

The disease severity, ranging from being asymptomatic to having acute illness, and associated inflammatory responses has suggested that alterations in the gut microbiota may play a crucial role in the development of chronic disorders due to COVID-19 infection. This study describes gut microbiota dysbiosis in COVID-19 patients and its implications relating to the disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: