Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 35 papers

Construction of a global pain systems network highlights phospholipid signaling as a regulator of heat nociception.

  • G Gregory Neely‎ et al.
  • PLoS genetics‎
  • 2012‎

The ability to perceive noxious stimuli is critical for an animal's survival in the face of environmental danger, and thus pain perception is likely to be under stringent evolutionary pressure. Using a neuronal-specific RNAi knock-down strategy in adult Drosophila, we recently completed a genome-wide functional annotation of heat nociception that allowed us to identify α2δ3 as a novel pain gene. Here we report construction of an evolutionary-conserved, system-level, global molecular pain network map. Our systems map is markedly enriched for multiple genes associated with human pain and predicts a plethora of novel candidate pain pathways. One central node of this pain network is phospholipid signaling, which has been implicated before in pain processing. To further investigate the role of phospholipid signaling in mammalian heat pain perception, we analysed the phenotype of PIP5Kα and PI3Kγ mutant mice. Intriguingly, both of these mice exhibit pronounced hypersensitivity to noxious heat and capsaicin-induced pain, which directly mapped through PI3Kγ kinase-dead knock-in mice to PI3Kγ lipid kinase activity. Using single primary sensory neuron recording, PI3Kγ function was mechanistically linked to a negative regulation of TRPV1 channel transduction. Our data provide a systems map for heat nociception and reinforces the extraordinary conservation of molecular mechanisms of nociception across different species.


A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function.

  • G Gregory Neely‎ et al.
  • Cell‎
  • 2010‎

Heart diseases are the most common causes of morbidity and death in humans. Using cardiac-specific RNAi-silencing in Drosophila, we knocked down 7061 evolutionarily conserved genes under conditions of stress. We present a first global roadmap of pathways potentially playing conserved roles in the cardiovascular system. One critical pathway identified was the CCR4-Not complex implicated in transcriptional and posttranscriptional regulatory mechanisms. Silencing of CCR4-Not components in adult Drosophila resulted in myofibrillar disarray and dilated cardiomyopathy. Heterozygous not3 knockout mice showed spontaneous impairment of cardiac contractility and increased susceptibility to heart failure. These heart defects were reversed via inhibition of HDACs, suggesting a mechanistic link to epigenetic chromatin remodeling. In humans, we show that a common NOT3 SNP correlates with altered cardiac QT intervals, a known cause of potentially lethal ventricular tachyarrhythmias. Thus, our functional genome-wide screen in Drosophila can identify candidates that directly translate into conserved mammalian genes involved in heart function.


The Krebs Cycle Enzyme Isocitrate Dehydrogenase 3A Couples Mitochondrial Metabolism to Synaptic Transmission.

  • Berrak Ugur‎ et al.
  • Cell reports‎
  • 2017‎

Neurotransmission is a tightly regulated Ca2+-dependent process. Upon Ca2+ influx, Synaptotagmin1 (Syt1) promotes fusion of synaptic vesicles (SVs) with the plasma membrane. This requires regulation at multiple levels, but the role of metabolites in SV release is unclear. Here, we uncover a role for isocitrate dehydrogenase 3a (idh3a), a Krebs cycle enzyme, in neurotransmission. Loss of idh3a leads to a reduction of the metabolite, alpha-ketoglutarate (αKG), causing defects in synaptic transmission similar to the loss of syt1. Supplementing idh3a flies with αKG suppresses these defects through an ATP or neurotransmitter-independent mechanism. Indeed, αKG, but not glutamate, enhances Syt1-dependent fusion in a reconstitution assay. αKG promotes interaction between the C2-domains of Syt1 and phospholipids. The data reveal conserved metabolic regulation of synaptic transmission via αKG. Our studies provide a synaptic role for αKG, a metabolite that has been proposed as a treatment for aging and neurodegenerative disorders.


Global redox proteome and phosphoproteome analysis reveals redox switch in Akt.

  • Zhiduan Su‎ et al.
  • Nature communications‎
  • 2019‎

Protein oxidation sits at the intersection of multiple signalling pathways, yet the magnitude and extent of crosstalk between oxidation and other post-translational modifications remains unclear. Here, we delineate global changes in adipocyte signalling networks following acute oxidative stress and reveal considerable crosstalk between cysteine oxidation and phosphorylation-based signalling. Oxidation of key regulatory kinases, including Akt, mTOR and AMPK influences the fidelity rather than their absolute activation state, highlighting an unappreciated interplay between these modifications. Mechanistic analysis of the redox regulation of Akt identified two cysteine residues in the pleckstrin homology domain (C60 and C77) to be reversibly oxidized. Oxidation at these sites affected Akt recruitment to the plasma membrane by stabilizing the PIP3 binding pocket. Our data provide insights into the interplay between oxidative stress-derived redox signalling and protein phosphorylation networks and serve as a resource for understanding the contribution of cellular oxidation to a range of diseases.


TSPAN6 is a suppressor of Ras-driven cancer.

  • Patrick O Humbert‎ et al.
  • Oncogene‎
  • 2022‎

Oncogenic mutations in the small GTPase RAS contribute to ~30% of human cancers. In a Drosophila genetic screen, we identified novel and evolutionary conserved cancer genes that affect Ras-driven tumorigenesis and metastasis in Drosophila including confirmation of the tetraspanin Tsp29Fb. However, it was not known whether the mammalian Tsp29Fb orthologue, TSPAN6, has any role in RAS-driven human epithelial tumors. Here we show that TSPAN6 suppressed tumor growth and metastatic dissemination of human RAS activating mutant pancreatic cancer xenografts. Whole-body knockout as well as tumor cell autonomous inactivation using floxed alleles of Tspan6 in mice enhanced KrasG12D-driven lung tumor initiation and malignant progression. Mechanistically, TSPAN6 binds to the EGFR and blocks EGFR-induced RAS activation. Moreover, we show that inactivation of TSPAN6 induces an epithelial-to-mesenchymal transition and inhibits cell migration in vitro and in vivo. Finally, low TSPAN6 expression correlates with poor prognosis of patients with lung and pancreatic cancers with mesenchymal morphology. Our results uncover TSPAN6 as a novel tumor suppressor receptor that controls epithelial cell identify and restrains RAS-driven epithelial cancer.


Increased Levels of the Parkinson's Disease-Associated Gene ITPKB Correlate with Higher Expression Levels of α-Synuclein, Independent of Mutation Status.

  • Francesca Di Leva‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Autosomal dominant mutations in the gene encoding α-synuclein (SNCA) were the first to be linked with hereditary Parkinson's disease (PD). Duplication and triplication of SNCA has been observed in PD patients, together with mutations at the N-terminal of the protein, among which A30P and A53T influence the formation of fibrils. By overexpressing human α-synuclein in the neuronal system of Drosophila, we functionally validated the ability of IP3K2, an ortholog of the GWAS identified risk gene, Inositol-trisphosphate 3-kinase B (ITPKB), to modulate α-synuclein toxicity in vivo. ITPKB mRNA and protein levels were also increased in SK-N-SH cells overexpressing wild-type α-synuclein, A53T or A30P mutants. Kinase overexpression was detected in the cytoplasmatic and in the nuclear compartments in all α-synuclein cell types. By quantifying mRNAs in the cortex of PD patients, we observed higher levels of ITPKB mRNA when SNCA was expressed more (p < 0.05), compared to controls. A positive correlation was also observed between SNCA and ITPKB expression in the cortex of patients, which was not seen in the controls. We replicated this observation in a public dataset. Our data, generated in SK-N-SH cells and in cortex from PD patients, show that the expression of α-synuclein and ITPKB is correlated in pathological situations.


dSec16 Acting in Insulin-like Peptide Producing Cells Controls Energy Homeostasis in Drosophila.

  • Ruo-Xin Zhang‎ et al.
  • Life (Basel, Switzerland)‎
  • 2022‎

Many studies show that genetics play a major contribution to the onset of obesity. Human genome-wide association studies (GWASs) have identified hundreds of genes that are associated with obesity. However, the majority of them have not been functionally validated. SEC16B has been identified in multiple obesity GWASs but its physiological role in energy homeostasis remains unknown. Here, we use Drosophila to determine the physiological functions of dSec16 in energy metabolism. Our results showed that global RNAi of dSec16 increased food intake and triglyceride (TAG) levels. Furthermore, this TAG increase was observed in flies with a specific RNAi of dSec16 in insulin-like peptide producing cells (IPCs) with an alteration of endocrine peptides. Together, our study demonstrates that dSec16 acting in IPCs controls energy balance and advances the molecular understanding of obesity.


TM2D genes regulate Notch signaling and neuronal function in Drosophila.

  • Jose L Salazar‎ et al.
  • PLoS genetics‎
  • 2021‎

TM2 domain containing (TM2D) proteins are conserved in metazoans and encoded by three separate genes in each model organism species that has been sequenced. Rare variants in TM2D3 are associated with Alzheimer's disease (AD) and its fly ortholog almondex is required for embryonic Notch signaling. However, the functions of this gene family remain elusive. We knocked-out all three TM2D genes (almondex, CG11103/amaretto, CG10795/biscotti) in Drosophila and found that they share the same maternal-effect neurogenic defect. Triple null animals are not phenotypically worse than single nulls, suggesting these genes function together. Overexpression of the most conserved region of the TM2D proteins acts as a potent inhibitor of Notch signaling at the γ-secretase cleavage step. Lastly, Almondex is detected in the brain and its loss causes shortened lifespan accompanied by progressive motor and electrophysiological defects. The functional links between all three TM2D genes are likely to be evolutionarily conserved, suggesting that this entire gene family may be involved in AD.


PRDM12 Is Transcriptionally Active and Required for Nociceptor Function Throughout Life.

  • Tomislav Kokotović‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2021‎

PR domain-containing member 12 (PRDM12) is a key developmental transcription factor in sensory neuronal specification and survival. Patients with rare deleterious variants in PRDM12 are born with congenital insensitivity to pain (CIP) due to the complete absence of a subtype of peripheral neurons that detect pain. In this paper, we report two additional CIP cases with a novel homozygous PRDM12 variant. To elucidate the function of PRDM12 during mammalian development and adulthood, we generated temporal and spatial conditional mouse models. We find that PRDM12 is expressed throughout the adult nervous system. We observed that loss of PRDM12 during mid-sensory neurogenesis but not in the adult leads to reduced survival. Comparing cellular biophysical nociceptive properties in developmental and adult-onset PRDM12 deletion mouse models, we find that PRDM12 is necessary for proper nociceptive responses throughout life. However, we find that PRDM12 regulates distinct age-dependent transcriptional programs. Together, our results implicate PRDM12 as a viable therapeutic target for specific pain therapies even in adults.


Ninjin'yoeito modulates feeding and activity under negative energy balance conditions via the NPY system.

  • Lei Zhang‎ et al.
  • Neuropeptides‎
  • 2021‎

The central and peripheral neuropeptide Y (NPY) system is critically involved in feeding and energy homeostasis control. Disease conditions as well as aging can lead to reduced functionality of the NPY system and boosting it represents a promising option to improve health outcomes in these situations. Here we show that Ninjin-yoeito (NYT), a Japanese kampo medicine comprising twelve herbs, and known to be effective to treat anorexia and frailty, mediates part of its action via NPY/peptide YY (PYY) related pathways. Especially under negative energy homeostasis conditions NYT is able to promote feeding and reduces activity to conserve energy. These effects are in part mediated via signalling through the NPY system since lack of Y4 receptors or PYY leading to modification in these responses highlighting the possibility for combination treatment to improve aging related conditions on energy homeostasis control.


Vascular senescence and leak are features of the early breakdown of the blood-brain barrier in Alzheimer's disease models.

  • Ka Ka Ting‎ et al.
  • GeroScience‎
  • 2023‎

Alzheimer's disease (AD) is an age-related disease, with loss of integrity of the blood-brain barrier (BBB) being an early feature. Cellular senescence is one of the reported nine hallmarks of aging. Here, we show for the first time the presence of senescent cells in the vasculature in AD patients and mouse models of AD. Senescent endothelial cells and pericytes are present in APP/PS1 transgenic mice but not in wild-type littermates at the time of amyloid deposition. In vitro, senescent endothelial cells display altered VE-cadherin expression and loss of cell junction formation and increased permeability. Consistent with this, senescent endothelial cells in APP/PS1 mice are present at areas of vascular leak that have decreased claudin-5 and VE-cadherin expression confirming BBB breakdown. Furthermore, single cell sequencing of endothelial cells from APP/PS1 transgenic mice confirms that adhesion molecule pathways are among the most highly altered pathways in these cells. At the pre-plaque stage, the vasculature shows significant signs of breakdown, with a general loss of VE-cadherin, leakage within the microcirculation, and obvious pericyte perturbation. Although senescent vascular cells were not directly observed at sites of vascular leak, senescent cells were close to the leak area. Thus, we would suggest in AD that there is a progressive induction of senescence in constituents of the neurovascular unit contributing to an increasing loss of vascular integrity. Targeting the vasculature early in AD, either with senolytics or with drugs that improve the integrity of the BBB may be valid therapeutic strategies.


Tubulin Polymerization Promoting Protein, Ringmaker, and MAP1B Homolog Futsch Coordinate Microtubule Organization and Synaptic Growth.

  • Qian Shi‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2019‎

Drosophila Ringmaker (Ringer) is homologous to the human Tubulin Polymerization Promoting Proteins (TPPPs) that are implicated in the stabilization and bundling of microtubules (MTs) that are particularly important for neurons and are also implicated in synaptic organization and plasticity. No in vivo functional data exist that have addressed the role of TPPP in synapse organization in any system. Here, we present the phenotypic and functional characterization of ringer mutants during Drosophila larval neuromuscular junction (NMJ) synaptic development. ringer mutants show reduced synaptic growth and transmission and display phenotypic similarities and genetic interactions with the Drosophila homolog of vertebrate Microtubule Associated Protein (MAP)1B, futsch. Immunohistochemical and biochemical analyses show that individual and combined loss of Ringer and Futsch cause a significant reduction in MT loops at the NMJs and reduced acetylated-tubulin levels. Presynaptic over-expression of Ringer and Futsch causes elevated levels of acetylated-tubulin and significant increase in NMJ MT loops. These results indicate that Ringer and Futsch regulate synaptic MT organization in addition to synaptic growth. Together our findings may inform studies on the close mammalian homolog, TPPP, and provide insights into the role of MTs and associated proteins in synapse growth and organization.


Nerve injury drives a heightened state of vigilance and neuropathic sensitization in Drosophila.

  • Thang M Khuong‎ et al.
  • Science advances‎
  • 2019‎

Injury can lead to devastating and often untreatable chronic pain. While acute pain perception (nociception) evolved more than 500 million years ago, virtually nothing is known about the molecular origin of chronic pain. Here we provide the first evidence that nerve injury leads to chronic neuropathic sensitization in insects. Mechanistically, peripheral nerve injury triggers a loss of central inhibition that drives escape circuit plasticity and neuropathic allodynia. At the molecular level, excitotoxic signaling within GABAergic (γ-aminobutyric acid) neurons required the acetylcholine receptor nAChRα1 and led to caspase-dependent death of GABAergic neurons. Conversely, disruption of GABA signaling was sufficient to trigger allodynia without injury. Last, we identified the conserved transcription factor twist as a critical downstream regulator driving GABAergic cell death and neuropathic allodynia. Together, we define how injury leads to allodynia in insects, and describe a primordial precursor to neuropathic pain may have been advantageous, protecting animals after serious injury.


A genome-wide Drosophila screen for heat nociception identifies α2δ3 as an evolutionarily conserved pain gene.

  • G Gregory Neely‎ et al.
  • Cell‎
  • 2010‎

Worldwide, acute, and chronic pain affects 20% of the adult population and represents an enormous financial and emotional burden. Using genome-wide neuronal-specific RNAi knockdown in Drosophila, we report a global screen for an innate behavior and identify hundreds of genes implicated in heat nociception, including the α2δ family calcium channel subunit straightjacket (stj). Mice mutant for the stj ortholog CACNA2D3 (α2δ3) also exhibit impaired behavioral heat pain sensitivity. In addition, in humans, α2δ3 SNP variants associate with reduced sensitivity to acute noxious heat and chronic back pain. Functional imaging in α2δ3 mutant mice revealed impaired transmission of thermal pain-evoked signals from the thalamus to higher-order pain centers. Intriguingly, in α2δ3 mutant mice, thermal pain and tactile stimulation triggered strong cross-activation, or synesthesia, of brain regions involved in vision, olfaction, and hearing.


A genome-wide Drosophila epithelial tumorigenesis screen identifies Tetraspanin 29Fb as an evolutionarily conserved suppressor of Ras-driven cancer.

  • Tamara Zoranovic‎ et al.
  • PLoS genetics‎
  • 2018‎

Oncogenic mutations in the small GTPase Ras contribute to ~30% of human cancers. However, Ras mutations alone are insufficient for tumorigenesis, therefore it is paramount to identify cooperating cancer-relevant signaling pathways. We devised an in vivo near genome-wide, functional screen in Drosophila and discovered multiple novel, evolutionarily-conserved pathways controlling Ras-driven epithelial tumorigenesis. Human gene orthologs of the fly hits were significantly downregulated in thousands of primary tumors, revealing novel prognostic markers for human epithelial tumors. Of the top 100 candidate tumor suppressor genes, 80 were validated in secondary Drosophila assays, identifying many known cancer genes and multiple novel candidate genes that cooperate with Ras-driven tumorigenesis. Low expression of the confirmed hits significantly correlated with the KRASG12 mutation status and poor prognosis in pancreatic cancer. Among the novel top 80 candidate cancer genes, we mechanistically characterized the function of the top hit, the Tetraspanin family member Tsp29Fb, revealing that Tsp29Fb regulates EGFR signaling, epithelial architecture and restrains tumor growth and invasion. Our functional Drosophila screen uncovers multiple novel and evolutionarily conserved epithelial cancer genes, and experimentally confirmed Tsp29Fb as a key regulator of EGFR/Ras induced epithelial tumor growth and invasion.


The structural conformation of the tachykinin domain drives the anti-tumoural activity of an octopus peptide in melanoma BRAFV600E.

  • Javier Moral-Sanz‎ et al.
  • British journal of pharmacology‎
  • 2022‎

Over past decades, targeted therapies and immunotherapy have improved survival and reduced the morbidity of patients with BRAF-mutated melanoma. However, drug resistance and relapse hinder overall success. Therefore, there is an urgent need for novel compounds with therapeutic efficacy against BRAF-melanoma. This prompted us to investigate the antiproliferative profile of a tachykinin-peptide from the Octopus kaurna, Octpep-1 in melanoma.


Identification of ALK in Thinness.

  • Michael Orthofer‎ et al.
  • Cell‎
  • 2020‎

There is considerable inter-individual variability in susceptibility to weight gain despite an equally obesogenic environment in large parts of the world. Whereas many studies have focused on identifying the genetic susceptibility to obesity, we performed a GWAS on metabolically healthy thin individuals (lowest 6th percentile of the population-wide BMI spectrum) in a uniquely phenotyped Estonian cohort. We discovered anaplastic lymphoma kinase (ALK) as a candidate thinness gene. In Drosophila, RNAi mediated knockdown of Alk led to decreased triglyceride levels. In mice, genetic deletion of Alk resulted in thin animals with marked resistance to diet- and leptin-mutation-induced obesity. Mechanistically, we found that ALK expression in hypothalamic neurons controls energy expenditure via sympathetic control of adipose tissue lipolysis. Our genetic and mechanistic experiments identify ALK as a thinness gene, which is involved in the resistance to weight gain.


Gut Microbiota Modifies Olfactory-Guided Microbial Preferences and Foraging Decisions in Drosophila.

  • Adam Chun-Nin Wong‎ et al.
  • Current biology : CB‎
  • 2017‎

The gut microbiota affects a wide spectrum of host physiological traits, including development [1-5], germline [6], immunity [7-9], nutrition [4, 10, 11], and longevity [12, 13]. Association with microbes also influences fitness-related behaviors such as mating [14] and social interactions [15, 16]. Although the gut microbiota is evidently important for host wellbeing, how hosts become associated with particular assemblages of microbes from the environment remains unclear. Here, we present evidence that the gut microbiota can modify microbial and nutritional preferences of Drosophila melanogaster. By experimentally manipulating the gut microbiota of flies subjected to behavioral and chemosensory assays, we found that fly-microbe attractions are shaped by the identity of the host microbiota. Conventional flies exhibit preference for their associated Lactobacillus, a behavior also present in axenic flies as adults and marginally as larvae. By contrast, fly preference for Acetobacter is primed by early-life exposure and can override the innate preference. These microbial preferences are largely olfactory guided and have profound impact on host foraging, as flies continuously trade off between acquiring beneficial microbes and balancing nutrients from food. Our study shows a role of animal microbiota in shaping host fitness-related behavior through their chemosensory responses, opening a research theme on the interrelationships between the microbiota, host sensory perception, and behavior.


PGC1α Controls Sucrose Taste Sensitization in Drosophila.

  • Qiao-Ping Wang‎ et al.
  • Cell reports‎
  • 2020‎

Perceived palatability of food controls caloric intake. Sweet taste is the primary means of detecting the carbohydrate content of food. Surprisingly, sweet taste sensitivity is responsive to extrinsic factors like diet, and this occurs by unknown mechanisms. Here, we describe an unbiased proteomic investigation into sweet taste sensitivity in the fruit fly. We identify a dopamine/cyclic AMP (cAMP)/CREB axis acting within sweet taste neurons that controls taste perception but is largely dispensable for acute taste transduction. This pathway modulates sweet taste perception in response to both sensory- and nutrient-restricted diets and converges on PGC1α, a critical regulator of metabolic health and lifespan. By electrophysiology, we found that enhanced sucrose taste sensitivity was the result of heightened sweet taste intensity and that PGC1α was both necessary and sufficient for this effect. Together, we provide the first molecular insight into how diet-induced taste perception is regulated within the sweet taste neuron.


Nutritional geometry framework of sleep.

  • Mei-Ling Lai‎ et al.
  • Life sciences‎
  • 2023‎

Sleep is a fundamental physiological function and is essential for all animals. Sleep is affected by diet compositions including protein (P) and carbohydrates (C), but there has not been a systematic investigation on the effect of dietary macronutrient balance on sleep.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: