2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

Application of Whole Exome Sequencing in Six Families with an Initial Diagnosis of Autosomal Dominant Retinitis Pigmentosa: Lessons Learned.

  • Berta Almoguera‎ et al.
  • PloS one‎
  • 2015‎

This study aimed to identify the genetics underlying dominant forms of inherited retinal dystrophies using whole exome sequencing (WES) in six families extensively screened for known mutations or genes. Thirty-eight individuals were subjected to WES. Causative variants were searched among single nucleotide variants (SNVs) and insertion/deletion variants (indels) and whenever no potential candidate emerged, copy number variant (CNV) analysis was performed. Variants or regions harboring a candidate variant were prioritized and segregation of the variant with the disease was further assessed using Sanger sequencing in case of SNVs and indels, and quantitative PCR (qPCR) for CNVs. SNV and indel analysis led to the identification of a previously reported mutation in PRPH2. Two additional mutations linked to different forms of retinal dystrophies were identified in two families: a known frameshift deletion in RPGR, a gene responsible for X-linked retinitis pigmentosa and p.Ser163Arg in C1QTNF5 associated with Late-Onset Retinal Degeneration. A novel heterozygous deletion spanning the entire region of PRPF31 was also identified in the affected members of a fourth family, which was confirmed with qPCR. This study allowed the identification of the genetic cause of the retinal dystrophy and the establishment of a correct diagnosis in four families, including a large heterozygous deletion in PRPF31, typically considered one of the pitfalls of this method. Since all findings in this study are restricted to known genes, we propose that targeted sequencing using gene-panel is an optimal first approach for the genetic screening and that once known genetic causes are ruled out, WES might be used to uncover new genes involved in inherited retinal dystrophies.


Genome-wide association study of serum minerals levels in children of different ethnic background.

  • Xiao Chang‎ et al.
  • PloS one‎
  • 2015‎

Calcium, magnesium, potassium, sodium, chloride and phosphorus are the major dietary minerals involved in various biological functions and are commonly measured in the blood serum. Sufficient mineral intake is especially important for children due to their rapid growth. Currently, the genetic mechanisms influencing serum mineral levels are poorly understood, especially for children. We carried out a genome-wide association (GWA) study on 5,602 European-American children and 4,706 African-American children who had mineral measures available in their electronic medical records (EMR). While no locus met the criteria for genome-wide significant association, our results demonstrated a nominal association of total serum calcium levels with a missense variant in the calcium -sensing receptor (CASR) gene on 3q13 (rs1801725, P = 1.96 × 10(-3)) in the African-American pediatric cohort, a locus previously reported in Caucasians. We also confirmed the association result in our pediatric European-American cohort (P = 1.38 × 10(-4)). We further replicated two other loci associated with serum calcium levels in the European-American cohort (rs780094, GCKR, P = 4.26 × 10(-3); rs10491003, GATA3, P = 0.02). In addition, we replicated a previously reported locus on 1q21, demonstrating association of serum magnesium levels with MUC1 (rs4072037, P = 2.04 × 10(-6)). Moreover, in an extended gene-based association analysis we uncovered evidence for association of calcium levels with the previously reported gene locus DGKD in both European-American children and African-American children. Taken together, our results support a role for CASR and DGKD mediated calcium regulation in both African-American and European-American children, and corroborate the association of calcium levels with GCKR and GATA3, and the association of magnesium levels with MUC1 in the European-American children.


RNA-Seq identifies novel myocardial gene expression signatures of heart failure.

  • Yichuan Liu‎ et al.
  • Genomics‎
  • 2015‎

Heart failure is a complex clinical syndrome and has become the most common reason for adult hospitalization in developed countries. Two subtypes of heart failure, ischemic heart disease (ISCH) and dilated cardiomyopathy (DCM), have been studied using microarray platforms. However, microarray has limited resolution. Here we applied RNA sequencing (RNA-Seq) to identify gene signatures for heart failure from six individuals, including three controls, one ISCH and two DCM patients. Using genes identified from this small RNA-Seq dataset, we were able to accurately classify heart failure status in a much larger set of 313 individuals. The identified genes significantly overlapped with genes identified via genome-wide association studies for cardiometabolic traits and the promoters of those genes were enriched for binding sites for transcriptions factors. Our results indicate that it is possible to use RNA-Seq to classify disease status for complex diseases such as heart failure using an extremely small training dataset.


Genome-wide association study for acute otitis media in children identifies FNDC1 as disease contributing gene.

  • Gijs van Ingen‎ et al.
  • Nature communications‎
  • 2016‎

Acute otitis media (AOM) is among the most common pediatric diseases, and the most frequent reason for antibiotic treatment in children. Risk of AOM is dependent on environmental and host factors, as well as a significant genetic component. We identify genome-wide significance at a locus on 6q25.3 (rs2932989, Pmeta=2.15 × 10-09), and show that the associated variants are correlated with the methylation status of the FNDC1 gene (cg05678571, P=1.43 × 10-06), and further show it is an eQTL for FNDC1 (P=9.3 × 10-05). The mouse homologue, Fndc1, is expressed in middle ear tissue and its expression is upregulated upon lipopolysaccharide treatment. In this first GWAS of AOM and the largest OM genetic study to date, we identify the first genome-wide significant locus associated with AOM.


Performance of an electronic health record-based phenotype algorithm to identify community associated methicillin-resistant Staphylococcus aureus cases and controls for genetic association studies.

  • Kathryn L Jackson‎ et al.
  • BMC infectious diseases‎
  • 2016‎

Community associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is one of the most common causes of skin and soft tissue infections in the United States, and a variety of genetic host factors are suspected to be risk factors for recurrent infection. Based on the CDC definition, we have developed and validated an electronic health record (EHR) based CA-MRSA phenotype algorithm utilizing both structured and unstructured data.


Copy number variation in CEP57L1 predisposes to congenital absence of bilateral ACL and PCL ligaments.

  • Yichuan Liu‎ et al.
  • Human genomics‎
  • 2015‎

Absence of the anterior (ACL) or posterior cruciate ligament (PCL) are rare congenital malformations that result in knee joint instability, with a prevalence of 1.7 per 100,000 live births and can be associated with other lower-limb abnormalities such as ACL agnesia and absence of the menisci of the knee. While a few cases of absence of ACL/PCL are reported in the literature, a number of large familial case series of related conditions such as ACL agnesia suggest a potential underlying monogenic etiology. We performed whole exome sequencing of a family with two individuals affected by ACL/PCL.


Speech Recognition via fNIRS Based Brain Signals.

  • Yichuan Liu‎ et al.
  • Frontiers in neuroscience‎
  • 2018‎

In this paper, we present the first evidence that perceived speech can be identified from the listeners' brain signals measured via functional-near infrared spectroscopy (fNIRS)-a non-invasive, portable, and wearable neuroimaging technique suitable for ecologically valid settings. In this study, participants listened audio clips containing English stories while prefrontal and parietal cortices were monitored with fNIRS. Machine learning was applied to train predictive models using fNIRS data from a subject pool to predict which part of a story was listened by a new subject not in the pool based on the brain's hemodynamic response as measured by fNIRS. fNIRS signals can vary considerably from subject to subject due to the different head size, head shape, and spatial locations of brain functional regions. To overcome this difficulty, a generalized canonical correlation analysis (GCCA) was adopted to extract latent variables that are shared among the listeners before applying principal component analysis (PCA) for dimension reduction and applying logistic regression for classification. A 74.7% average accuracy has been achieved for differentiating between two 50 s. long story segments and a 43.6% average accuracy has been achieved for differentiating four 25 s. long story segments. These results suggest the potential of an fNIRS based-approach for building a speech decoding brain-computer-interface for developing a new type of neural prosthetic system.


Combining targeted panel-based resequencing and copy-number variation analysis for the diagnosis of inherited syndromic retinopathies and associated ciliopathies.

  • Iker Sanchez-Navarro‎ et al.
  • Scientific reports‎
  • 2018‎

Inherited syndromic retinopathies are a highly heterogeneous group of diseases that involve retinal anomalies and systemic manifestations. They include retinal ciliopathies, other well-defined clinical syndromes presenting with retinal alterations and cases of non-specific multisystemic diseases. The heterogeneity of these conditions makes molecular and clinical characterization of patients challenging in daily clinical practice. We explored the capacity of targeted resequencing and copy-number variation analysis to improve diagnosis of a heterogeneous cohort of 47 patients mainly comprising atypical cases that did not clearly fit a specific clinical diagnosis. Thirty-three likely pathogenic variants were identified in 18 genes (ABCC6, ALMS1, BBS1, BBS2, BBS12, CEP41, CEP290, IFT172, IFT27, MKKS, MYO7A, OTX2, PDZD7, PEX1, RPGRIP1, USH2A, VPS13B, and WDPCP). Molecular findings and additional clinical reassessments made it possible to accurately characterize 14 probands (30% of the total). Notably, clinical refinement of complex phenotypes was achieved in 4 cases, including 2 de novo OTX2-related syndromes, a novel phenotypic association for the ciliary CEP41 gene, and the co-existence of biallelic USH2A variants and a Koolen-de-Vries syndrome-related 17q21.31 microdeletion. We demonstrate that combining next-generation sequencing and CNV analysis is a comprehensive and useful approach to unravel the extensive phenotypic and genotypic complexity of inherited syndromic retinopathies.


Mitochondrial DNA haplogroups and risk of attention deficit and hyperactivity disorder in European Americans.

  • Xiao Chang‎ et al.
  • Translational psychiatry‎
  • 2020‎

Although mitochondrial dysfunction has been implicated in the pathophysiology of attention deficit and hyperactivity disorder ADHD, the role of mitochondrial DNA (mtDNA) has not been extensively investigated. To determine whether mtDNA haplogroups influence risk of ADHD, we performed a case-control study comprising 2076 ADHD cases and 5078 healthy controls, all of whom were European decedents recruited from The Children's Hospital of Philadelphia (CHOP). Associations between eight major European mtDNA Haplogroups and ADHD risk were assessed in three independent European cohorts. Meta-analysis of the three studies indicated that mtDNA haplogroups K (odds ratio = 0.69, P = 2.24 × 10-4, Pcorrected = 1.79 × 10-3) and U (odds ratio = 0.77, P = 8.88 × 10-4, Pcorrected = 7.11 × 10-3) were significantly associated with reduced risk of ADHD. In contrast, haplogroup HHV* (odds ratio = 1.18, P = 2.32 × 10-3, Pcorrected = 0.019) was significantly associated with increased risk of ADHD. Our results provide novel insight into the genetic basis of ADHD, implicating mitochondrial mechanisms in the pathophysiology of this relatively common psychiatric disorder.


The Long Noncoding RNA Landscape in Amygdala Tissues from Schizophrenia Patients.

  • Tian Tian‎ et al.
  • EBioMedicine‎
  • 2018‎

To date, most transcriptome studies of schizophrenia focus on the analysis of protein-coding genes. Long noncoding RNAs (lncRNAs) are emerging as key tissue-specific regulators of cellular and disease processes. The amygdala brain region has been implicated in the pathophysiology of schizophrenia. We performed unbiased whole transcriptome profiling of amygdala tissues from 22 schizophrenia patients and 24 non-psychiatric controls using RNA-seq. We reconstructed amygdala transcriptome and employed systems biology approaches to annotating the functional roles of lncRNAs. As a result, we identified 839 novel lncRNAs in amygdala. We found in amygdala lncRNAs are more subtype-specific than protein-coding genes. We identified functional modules associated with "synaptic transmission", "ribosome", and "immune responses" which were related to schizophrenia pathophysiology that involved lncRNAs. Integrative functional analyses associating individual lncRNAs with specific pathways and functions further show that amygdala lncRNAs are connected with all of these pathways. Our study presents the first systematic landscape of lncRNAs in amygdala tissue from schizophrenia cases.


Identification of Novel Loci Shared by Juvenile Idiopathic Arthritis Subtypes Through Integrative Genetic Analysis.

  • Jin Li‎ et al.
  • Arthritis & rheumatology (Hoboken, N.J.)‎
  • 2022‎

Juvenile idiopathic arthritis (JIA) is the most common chronic immune-mediated joint disease among children and encompasses a heterogeneous group of immune-mediated joint disorders classified into 7 subtypes according to clinical presentation. However, phenotype overlap and biologic evidence suggest a shared mechanistic basis between subtypes. This study was undertaken to systematically investigate shared genetic underpinnings of JIA subtypes.


Intestinal preservation in a birdlike dinosaur supports conservatism in digestive canal evolution among theropods.

  • Xuri Wang‎ et al.
  • Scientific reports‎
  • 2022‎

Dromaeosaurids were bird-like dinosaurs with a predatory ecology known to forage on fish, mammals and other dinosaurs. We describe Daurlong wangi gen. et sp. nov., a dromaeosaurid from the Lower Cretaceous Jehol Biota of Inner Mongolia, China. Exceptional preservation in this specimen includes a large bluish layer in the abdomen which represents one of the few occurrences of intestinal remnants among non-avian dinosaurs. Phylogenetically, Daurlong nests among a lineage of short-armed Jehol Biota species closer to eudromaeosaurs than microraptorines. The topographic correspondence between the exceptionally preserved intestine in the more stem-ward Scipionyx and the remnants in the more birdlike Daurlong provides a phylogenetic framework for inferring intestine tract extent in other theropods lacking fossilized visceral tissues. Gastrointestinal organization results conservative among faunivorous dinosaurs, with the evolution of a bird-like alimentary canal restricted to avialan theropods.


Directional dominance on stature and cognition in diverse human populations.

  • Peter K Joshi‎ et al.
  • Nature‎
  • 2015‎

Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.


The missense variation landscape of FTO, MC4R, and TMEM18 in obese children of African Ancestry.

  • Sandra Deliard‎ et al.
  • Obesity (Silver Spring, Md.)‎
  • 2013‎

Common variation at the loci harboring fat mass and obesity (FTO), melanocortin receptor 4 (MC4R), and transmembrane protein 18 (TMEM18) is consistently reported as being statistically most strongly associated with obesity. Investigations if these loci also harbor rarer missense variants that confer substantially higher risk of common childhood obesity in African American (AA) children were conducted.


Modular composition predicts kinase/substrate interactions.

  • Yichuan Liu‎ et al.
  • BMC bioinformatics‎
  • 2010‎

Phosphorylation events direct the flow of signals and metabolites along cellular protein networks. Current annotations of kinase-substrate binding events are far from complete. In this study, we scanned the entire human protein sequences using the PROSITE domain annotation tool to identify patterns of domain composition in kinases and their substrates. We identified statistically enriched pairs of strings of domains (signature pairs) in kinase-substrate couples presented in the 2006 version of the PTM database.


A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci.

  • Jonathan P Bradfield‎ et al.
  • PLoS genetics‎
  • 2011‎

Diabetes impacts approximately 200 million people worldwide, of whom approximately 10% are affected by type 1 diabetes (T1D). The application of genome-wide association studies (GWAS) has robustly revealed dozens of genetic contributors to the pathogenesis of T1D, with the most recent meta-analysis identifying in excess of 40 loci. To identify additional genetic loci for T1D susceptibility, we examined associations in the largest meta-analysis to date between the disease and ∼2.54 million SNPs in a combined cohort of 9,934 cases and 16,956 controls. Targeted follow-up of 53 SNPs in 1,120 affected trios uncovered three new loci associated with T1D that reached genome-wide significance. The most significantly associated SNP (rs539514, P = 5.66×10⁻¹¹) resides in an intronic region of the LMO7 (LIM domain only 7) gene on 13q22. The second most significantly associated SNP (rs478222, P = 3.50×10⁻⁹ resides in an intronic region of the EFR3B (protein EFR3 homolog B) gene on 2p23; however, the region of linkage disequilibrium is approximately 800 kb and harbors additional multiple genes, including NCOA1, C2orf79, CENPO, ADCY3, DNAJC27, POMC, and DNMT3A. The third most significantly associated SNP (rs924043, P = 8.06×10⁻⁹ lies in an intergenic region on 6q27, where the region of association is approximately 900 kb and harbors multiple genes including WDR27, C6orf120, PHF10, TCTE3, C6orf208, LOC154449, DLL1, FAM120B, PSMB1, TBP, and PCD2. These latest associated regions add to the growing repertoire of gene networks predisposing to T1D.


Comprehensive analysis of gene expression in human retina and supporting tissues.

  • Mingyao Li‎ et al.
  • Human molecular genetics‎
  • 2014‎

Understanding the influence of gene expression on the molecular mechanisms underpinning human phenotypic diversity is fundamental to being able to predict health outcomes and treat disease. We have carried out whole transcriptome expression analysis on a series of eight normal human postmortem eyes by RNA sequencing. Here we present data showing that ∼80% of the transcriptome is expressed in the posterior layers of the eye and that there is significant differential expression not only between the layers of the posterior part of the eye but also between locations of a tissue layer. These differences in expression also extend to alternative splicing and splicing factors. Differentially expressed genes are enriched for genes associated with psychiatric, immune and cardiovascular disorders. Enrichment categories for gene ontology included ion transport, synaptic transmission and visual and sensory perception. Lastly, allele-specific expression was found to be significant for CFH, C3 and CFB, which are known risk genes for age-related macular degeneration. These expression differences should be useful in determining the underlying biology of associations with common diseases of the human retina, retinal pigment epithelium and choroid and in guiding the analysis of the genomic regions involved in the control of normal gene expression.


A novel common variant in DCST2 is associated with length in early life and height in adulthood.

  • Ralf J P van der Valk‎ et al.
  • Human molecular genetics‎
  • 2015‎

Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 × 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; β = 0.046, SE = 0.008, P = 2.46 × 10(-8), explained variance = 0.05%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 × 10(-4)) and adult height (N = 127 513; P = 1.45 × 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13% of variance in birth length. The same SNPs explained 2.95% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.


Common and Rare Genetic Risk Factors Converge in Protein Interaction Networks Underlying Schizophrenia.

  • Xiao Chang‎ et al.
  • Frontiers in genetics‎
  • 2018‎

Hundreds of genomic loci have been identified with the recent advances of schizophrenia in genome-wide association studies (GWAS) and sequencing studies. However, the functional interactions among those genes remain largely unknown. We developed a network-based approach to integrate multiple genetic risk factors, which lead to the discovery of new susceptibility genes and causal sub-networks, or pathways in schizophrenia. We identified significantly and consistently over-represented pathways in the largest schizophrenia GWA studies, which are highly relevant to synaptic plasticity, neural development and signaling transduction, such as long-term potentiation, neurotrophin signaling pathway, and the ERBB signaling pathway. We also demonstrated that genes targeted by common SNPs are more likely to interact with genes harboring de novo mutations (DNMs) in the protein-protein interaction (PPI) network, suggesting a mutual interplay of both common and rare variants in schizophrenia. We further developed an edge-based search algorithm to identify the top-ranked gene modules associated with schizophrenia risk. Our results suggest that the N-methyl-D-aspartate receptor (NMDAR) interactome may play a leading role in the pathology of schizophrenia, as it is highly targeted by multiple types of genetic risk factors.


Role of the ADCY9 gene in cardiac abnormalities of the Rubinstein-Taybi syndrome.

  • Yueheng Wu‎ et al.
  • Orphanet journal of rare diseases‎
  • 2020‎

Rubinstein-Taybi syndrome (RTS) is a rare, congenital, plurimalformative, and neurodevelopmental disorder. Previous studies have reported that large deletions contribute to more severe RTS phenotypes than those caused by CREBBP point mutations, suggesting a concurrent pathogenetic role of flanking genes, typical of contiguous gene syndromes, but the detailed genetics are unclear.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: