Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

High-resolution array CGH profiling identifies Na/K transporting ATPase interacting 2 (NKAIN2) as a predisposing candidate gene in neuroblastoma.

  • Paolo Romania‎ et al.
  • PloS one‎
  • 2013‎

Neuroblastoma (NB), the most common solid cancer in early childhood, usually occurs sporadically but also its familial occurance is known in 1-2% of NB patients. Germline mutations in the ALK and PHOX2B genes have been found in a subset of familial NBs. However, because some individuals harbouring mutations in these genes do not develop this tumor, additional genetic alterations appear to be required for NB pathogenesis. Herein, we studied an Italian family with three NB patients, two siblings and a first cousin, carrying an ALK germline-activating mutation R1192P, that was inherited from their unaffected mothers and with no mutations in the PHOX2B gene. A comparison between somatic and germline DNA copy number changes in the two affected siblings by a high resolution array-based Comparative Genomic Hybridization (CGH) analysis revealed a germline gain at NKAIN2 (Na/K transporting ATPase interacting 2) locus in one of the sibling, that was inherited from the parent who does not carry the ALK mutation. Surprisingly, NKAIN2 was expressed at high levels also in the affected sibling that lacks the genomic gain at this locus, clearly suggesting the existance of other regulatory mechanisms. High levels of NKAIN2 were detected in the MYCN-amplified NB cell lines and in the most aggressive NB lesions as well as in the peripheral blood of a large cohort of NB patients. Consistent with a role of NKAIN2 in NB development, NKAIN2 was down-regulated during all-trans retinoic acid differentiation in two NB cell lines. Taken together, these data indicate a potential role of NKAIN2 gene in NB growth and differentiation.


IRF1 and NF-kB restore MHC class I-restricted tumor antigen processing and presentation to cytotoxic T cells in aggressive neuroblastoma.

  • Silvia Lorenzi‎ et al.
  • PloS one‎
  • 2012‎

Neuroblastoma (NB), the most common solid extracranial cancer of childhood, displays a remarkable low expression of Major Histocompatibility Complex class I (MHC-I) and Antigen Processing Machinery (APM) molecules, including Endoplasmic Reticulum (ER) Aminopeptidases, and poorly presents tumor antigens to Cytotoxic T Lymphocytes (CTL). We have previously shown that this is due to low expression of the transcription factor NF-kB p65. Herein, we show that not only NF-kB p65, but also the Interferon Regulatory Factor 1 (IRF1) and certain APM components are low in a subset of NB cell lines with aggressive features. Whereas single transfection with either IRF1, or NF-kB p65 is ineffective, co-transfection results in strong synergy and substantial reversion of the MHC-I/APM-low phenotype in all NB cell lines tested. Accordingly, linked immunohistochemistry expression patterns between nuclear IRF1 and p65 on the one hand, and MHC-I on the other hand, were observed in vivo. Absence and presence of the three molecules neatly segregated between high-grade and low-grade NB, respectively. Finally, APM reconstitution by double IRF1/p65 transfection rendered a NB cell line susceptible to killing by anti MAGE-A3 CTLs, lytic efficiency comparable to those seen upon IFN-γ treatment. This is the first demonstration that a complex immune escape phenotype can be rescued by reconstitution of a limited number of master regulatory genes. These findings provide molecular insight into defective MHC-I expression in NB cells and provide the rational for T cell-based immunotherapy in NB variants refractory to conventional therapy.


Prolonged Pseudohypoxia Targets Ambra1 mRNA to P-Bodies for Translational Repression.

  • Somayeh Pourpirali‎ et al.
  • PloS one‎
  • 2015‎

Hypoxia has been associated with several pathological conditions ranging from stroke to cancer. This condition results in the activation of autophagy, a cyto-protective response involving the formation of double-membraned structures, the autophagosomes, in the cytoplasm. In this study, we investigated the cellular mechanisms regulating the autophagy gene Ambra1, after exposure to a hypoxia mimetic, cobalt chloride (CoCl2). We observed that, upon CoCl2 administration, activation of the apoptotic machinery was concomitant with down-regulation of the pro-autophagic factor Ambra1, without affecting transcription. Additionally, co-treating the cells with the caspase inhibitor z-VAD-FMK did not restore Ambra1 protein levels, this implying the involvement of other regulatory mechanisms. Partial re-localization of Ambra1 mRNA to non-translating fractions and cytoplasmic P-bodies was further detected. Thus, in this pseudohypoxic context, Ambra1 mRNA translocation to P-bodies and translational suppression correlated with increased cell death.


Biological, functional and genetic characterization of bone marrow-derived mesenchymal stromal cells from pediatric patients affected by acute lymphoblastic leukemia.

  • Antonella Conforti‎ et al.
  • PloS one‎
  • 2013‎

Alterations in hematopoietic microenvironment of acute lymphoblastic leukemia patients have been claimed to occur, but little is known about the components of marrow stroma in these patients. In this study, we characterized mesenchymal stromal cells (MSCs) isolated from bone marrow (BM) of 45 pediatric patients with acute lymphoblastic leukemia (ALL-MSCs) at diagnosis (day+0) and during chemotherapy treatment (days: +15; +33; +78), the time points being chosen according to the schedule of BM aspirates required by the AIEOP-BFM ALL 2009 treatment protocol. Morphology, proliferative capacity, immunophenotype, differentiation potential, immunomodulatory properties and ability to support long-term hematopoiesis of ALL-MSCs were analysed and compared with those from 41 healthy donors (HD-MSCs). ALL-MSCs were also genetically characterized through array-CGH, conventional karyotyping and FISH analysis. Moreover, we compared ALL-MSCs generated at day+0 with those isolated during chemotherapy. Morphology, immunophenotype, differentiation potential and in vitro life-span did not differ between ALL-MSCs and HD-MSCs. ALL-MSCs showed significantly lower proliferative capacity (p<0.001) and ability to support in vitro hematopoiesis (p = 0.04) as compared with HD-MSCs, while they had similar capacity to inhibit in vitro mitogen-induced T-cell proliferation (p = N.S.). ALL-MSCs showed neither the typical translocations carried by the leukemic clone (when present), nor other genetic abnormalities acquired during ex vivo culture. Our findings indicate that ALL-MSCs display reduced ability to proliferate and to support long-term hematopoiesis in vitro. ALL-MSCs isolated at diagnosis do not differ from those obtained during treatment.


Oligophrenin-1 (OPHN1), a gene involved in X-linked intellectual disability, undergoes RNA editing and alternative splicing during human brain development.

  • Sabina Barresi‎ et al.
  • PloS one‎
  • 2014‎

Oligophrenin-1 (OPHN1) encodes for a Rho-GTPase-activating protein, important for dendritic morphogenesis and synaptic function. Mutations in this gene have been identified in patients with X-linked intellectual disability associated with cerebellar hypoplasia. ADAR enzymes are responsible for A-to-I RNA editing, an essential post-transcriptional RNA modification contributing to transcriptome and proteome diversification. Specifically, ADAR2 activity is essential for brain development and function. Herein, we show that the OPHN1 transcript undergoes post-transcriptional modifications such as A-to-I RNA editing and alternative splicing in human brain and other tissues. We found that OPHN1 editing is detectable already at the 18th week of gestation in human brain with a boost of editing at weeks 20 to 33, concomitantly with OPHN1 expression increase and the appearance of a novel OPHN1 splicing isoform. Our results demonstrate that multiple post-transcriptional events occur on OPHN1, a gene playing an important role in brain function and development.


Hyper-activation of Notch3 amplifies the proliferative potential of rhabdomyosarcoma cells.

  • Maria De Salvo‎ et al.
  • PloS one‎
  • 2014‎

Rhabdomyosarcoma (RMS) is a pediatric myogenic-derived soft tissue sarcoma that includes two major histopathological subtypes: embryonal and alveolar. The majority of alveolar RMS expresses PAX3-FOXO1 fusion oncoprotein, associated with the worst prognosis. RMS cells show myogenic markers expression but are unable to terminally differentiate. The Notch signaling pathway is a master player during myogenesis, with Notch1 activation sustaining myoblast expansion and Notch3 activation inhibiting myoblast fusion and differentiation. Accordingly, Notch1 signaling is up-regulated and activated in embryonal RMS samples and supports the proliferation of tumor cells. However, it is unable to control their differentiation properties. We previously reported that Notch3 is activated in RMS cell lines, of both alveolar and embryonal subtype, and acts by inhibiting differentiation. Moreover, Notch3 depletion reduces PAX3-FOXO1 alveolar RMS tumor growth in vivo. However, whether Notch3 activation also sustains the proliferation of RMS cells remained unclear. To address this question, we forced the expression of the activated form of Notch3, Notch3IC, in the RH30 and RH41 PAX3-FOXO1-positive alveolar and in the RD embryonal RMS cell lines and studied the proliferation of these cells. We show that, in all three cell lines tested, Notch3IC over-expression stimulates in vitro cell proliferation and prevents the effects of pharmacological Notch inhibition. Furthermore, Notch3IC further increases RH30 cell growth in vivo. Interestingly, knockdown of Notch canonical ligands JAG1 or DLL1 in RMS cell lines decreases Notch3 activity and reduces cell proliferation. Finally, the expression of Notch3IC and its target gene HES1 correlates with that of the proliferative marker Ki67 in a small cohort of primary PAX-FOXO1 alveolar RMS samples. These results strongly suggest that high levels of Notch3 activation increase the proliferative potential of RMS cells.


COVID-19 disease-Temporal analyses of complete blood count parameters over course of illness, and relationship to patient demographics and management outcomes in survivors and non-survivors: A longitudinal descriptive cohort study.

  • Simone Lanini‎ et al.
  • PloS one‎
  • 2020‎

Detailed temporal analyses of complete (full) blood count (CBC) parameters, their evolution and relationship to patient age, gender, co-morbidities and management outcomes in survivors and non-survivors with COVID-19 disease, could identify prognostic clinical biomarkers.


Altered mitochondria morphology and cell metabolism in Apaf1-deficient cells.

  • Mónica Sancho‎ et al.
  • PloS one‎
  • 2014‎

Apaf1 (apoptotic protease activating factor 1) is the central component of the apoptosome, a multiprotein complex that activates procaspase-9 after cytochrome c release from the mitochondria in the intrinsic pathway of apoptosis. Other cellular roles, including a pro-survival role, have also been described for Apaf1, while the relative contribution of each function to cell death, but also to cell homeostatic conditions, remain to be clarified.


A New Transgenic Mouse Model for Studying the Neurotoxicity of Spermine Oxidase Dosage in the Response to Excitotoxic Injury.

  • Manuela Cervelli‎ et al.
  • PloS one‎
  • 2013‎

Spermine oxidase is a FAD-containing enzyme involved in polyamines catabolism, selectively oxidizing spermine to produce H2O2, spermidine, and 3-aminopropanal. Spermine oxidase is highly expressed in the mouse brain and plays a key role in regulating the levels of spermine, which is involved in protein synthesis, cell division and cell growth. Spermine is normally released by neurons at synaptic sites where it exerts a neuromodulatory function, by specifically interacting with different types of ion channels, and with ionotropic glutamate receptors. In order to get an insight into the neurobiological roles of spermine oxidase and spermine, we have deregulated spermine oxidase gene expression producing and characterizing the transgenic mouse model JoSMOrec, conditionally overexpressing the enzyme in the neocortex. We have investigated the effects of spermine oxidase overexpression in the mouse neocortex by transcript accumulation, immunohistochemical analysis, enzymatic assays and polyamine content in young and aged animals. Transgenic JoSMOrec mice showed in the neocortex a higher H2O2 production in respect to Wild-Type controls, indicating an increase of oxidative stress due to SMO overexpression. Moreover, the response of transgenic mice to excitotoxic brain injury, induced by kainic acid injection, was evaluated by analysing the behavioural phenotype, the immunodistribution of neural cell populations, and the ultrastructural features of neocortical neurons. Spermine oxidase overexpression and the consequently altered polyamine levels in the neocortex affects the cytoarchitecture in the adult and aging brain, as well as after neurotoxic insult. It resulted that the transgenic JoSMOrec mouse line is more sensitive to KA than Wild-Type mice, indicating an important role of spermine oxidase during excitotoxicity. These results provide novel evidences of the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain.


Cannabinoid receptor type 2 functional variant influences liver damage in children with non-alcoholic fatty liver disease.

  • Francesca Rossi‎ et al.
  • PloS one‎
  • 2012‎

Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of disease ranging from simple steatosis to inflammatory steatohepatitis (NASH) with different degrees of fibrosis that can ultimately progress to cirrhosis. Accumulating evidence suggests the involvement of the endocannabinoid-system in liver disease and related complications. In particular, hepatoprotective properties for Cannabinoid Receptor type 2 (CB2) have been shown both through experimental murine models of liver injury and association study between a CB2 functional variant, Q63R, and liver enzymes in Italian obese children with steatosis.Here, in order to clarify the role of CB2 in severity of childhood NAFLD, we have investigated the association of the CB2 Q63R variant, with histological parameters of liver disease severity in 118 Italian children with histologically-proven NAFLD.CB2 Q63R genotype was assigned performing a TaqMan assay and a general linear model analysis was used to evaluate the association between the polymorphism and the histological parameters of liver damage.We have found that whereas CB2 Q63R variant is not associated with steatosis or fibrosis, it is associated with the severity of the inflammation (p = 0.002) and the presence of NASH (p = 0.02).Our findings suggest a critical role for CB2 Q63R variant in modulating hepatic inflammation state in obese children and in the consequent increased predisposition of these patients to liver damage.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: