Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Use of Genome Engineering to Create Patient Specific MLL Translocations in Primary Human Hematopoietic Stem and Progenitor Cells.

  • Erin H Breese‎ et al.
  • PloS one‎
  • 2015‎

One of the challenging questions in cancer biology is how a normal cell transforms into a cancer cell. There is strong evidence that specific chromosomal translocations are a key element in this transformation process. Our studies focus on understanding the developmental mechanism by which a normal stem or progenitor cell transforms into leukemia. Here we used engineered nucleases to induce simultaneous specific double strand breaks in the MLL gene and two different known translocation partners (AF4 and AF9), which resulted in specific chromosomal translocations in K562 cells as well as primary hematopoietic stem and progenitor cells (HSPCs). The initiation of a specific MLL translocation in a small number of HSPCs likely mimics the leukemia-initiating event that occurs in patients. In our studies, the creation of specific MLL translocations in CD34+ cells was not sufficient to transform cells in vitro. Rather, a variety of fates was observed for translocation positive cells including cell loss over time, a transient proliferative advantage followed by loss of the clone, or a persistent proliferative advantage. These studies highlight the application of genome engineering tools in primary human HSPCs to induce and prospectively study the consequences of initiating translocation events in leukemia pathogenesis.


CD93 Marks a Non-Quiescent Human Leukemia Stem Cell Population and Is Required for Development of MLL-Rearranged Acute Myeloid Leukemia.

  • Masayuki Iwasaki‎ et al.
  • Cell stem cell‎
  • 2015‎

Leukemia stem cells (LSCs) are thought to share several properties with hematopoietic stem cells (HSCs), including cell-cycle quiescence and a capacity for self-renewal. These features are hypothesized to underlie leukemic initiation, progression, and relapse, and they also complicate efforts to eradicate leukemia through therapeutic targeting of LSCs without adverse effects on HSCs. Here, we show that acute myeloid leukemias (AMLs) with genomic rearrangements of the MLL gene contain a non-quiescent LSC population. Although human CD34(+)CD38(-) LSCs are generally highly quiescent, the C-type lectin CD93 is expressed on a subset of actively cycling, non-quiescent AML cells enriched for LSC activity. CD93 expression is functionally required for engraftment of primary human AML LSCs and leukemogenesis, and it regulates LSC self-renewal predominantly by silencing CDKN2B, a major tumor suppressor in AML. Thus, CD93 expression identifies a predominantly cycling, non-quiescent leukemia-initiating cell population in MLL-rearranged AML, providing opportunities for selective targeting and eradication of LSCs.


Epigenetic roles of MLL oncoproteins are dependent on NF-κB.

  • Hsu-Ping Kuo‎ et al.
  • Cancer cell‎
  • 2013‎

MLL fusion proteins in leukemia induce aberrant transcriptional elongation and associated chromatin perturbations; however, the upstream signaling pathways and activators that recruit or retain MLL oncoproteins at initiated promoters are unknown. Through functional and comparative genomic studies, we identified an essential role for NF-κB signaling in MLL leukemia. Suppression of NF-κB led to robust antileukemia effects that phenocopied loss of functional MLL oncoprotein or associated epigenetic cofactors. The NF-κB subunit RELA occupies promoter regions of crucial MLL target genes and sustains the MLL-dependent leukemia stem cell program. IKK/NF-κB signaling is required for wild-type and fusion MLL protein retention and maintenance of associated histone modifications, providing a molecular rationale for enhanced efficacy in therapeutic targeting of this pathway in MLL leukemias.


MLL becomes functional through intra-molecular interaction not by proteolytic processing.

  • Akihiko Yokoyama‎ et al.
  • PloS one‎
  • 2013‎

The mixed lineage leukemia (MLL) protein is an epigenetic transcriptional regulator that controls proliferative expansion of immature hematopoietic progenitors, whose aberrant activation triggers leukemogenesis. A mature MLL protein is produced by formation of an intra-molecular complex and proteolytic cleavage. However the biological significance of these two post-transcriptional events remains unclear. To address their in vivo roles, mouse mutant alleles were created that exclusively express either a variant protein incapable of intra-molecular interaction (designated de) or an uncleavable mutant protein (designated uc). The de homozygous mice died during midgestation and manifested devastating failure in embryonic development and reduced numbers of hematopoietic progenitors, whereas uc homozygous mice displayed no apparent defects. Expression of MLL target genes was severely impaired in de homozygous fibroblasts but unaffected in uc homozygous fibroblasts. These results unequivocally demonstrate that intra-molecular complex formation is a crucial maturation step whereas proteolytic cleavage is dispensable for MLL-dependent gene activation and proliferation in vivo.


The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis.

  • Akihiko Yokoyama‎ et al.
  • Cell‎
  • 2005‎

The Mixed-Lineage Leukemia (MLL) protein is a histone methyltransferase that is mutated in clinically and biologically distinctive subsets of acute leukemia. MLL normally associates with a cohort of highly conserved cofactors to form a macromolecular complex that includes menin, a product of the MEN1 tumor suppressor gene, which is mutated in heritable and sporadic endocrine tumors. We demonstrate here that oncogenic MLL fusion proteins retain an ability to stably associate with menin through a high-affinity, amino-terminal, conserved binding motif and that this interaction is required for the initiation of MLL-mediated leukemogenesis. Furthermore, menin is essential for maintenance of MLL-associated but not other oncogene induced myeloid transformation. Acute genetic ablation of menin reverses aberrant Hox gene expression mediated by MLL-menin promoter-associated complexes, and specifically abrogates the differentiation arrest and oncogenic properties of MLL-transformed leukemic blasts. These results demonstrate that a human oncoprotein is critically dependent on direct physical interaction with a tumor suppressor protein for its oncogenic activity, validate a potential target for molecular therapy, and suggest central roles for menin in altered epigenetic functions underlying the pathogenesis of hematopoietic cancers.


IL-3 or IL-7 increases ex vivo gene transfer efficiency in ADA-SCID BM CD34+ cells while maintaining in vivo lymphoid potential.

  • Francesca Ficara‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2004‎

To improve maintenance and gene transfer of human lymphoid progenitors for clinical use in gene therapy of adenosine deaminase (ADA)-deficient SCID we investigated several gene transfer protocols using various stem cell-enriched sources. The lymphoid differentiation potential was measured by an in vitro clonal assay for B/NK cells and in the in vivo SCID-hu mouse model. Ex vivo culture with the cytokines TPO, FLT3-ligand, and SCF (T/F/S) plus IL-3 or IL-7 substantially increased the yield of transduced bone marrow (BM) CD34(+) cells purified from ADA-SCID patients or healthy donors, compared to T/F/S alone. Moreover, the use of IL-3 or IL-7 significantly improved the maintenance of in vitro B cell progenitors from ADA-SCID BM cells and allowed the efficient transduction of B and NK cell progenitors. Under these optimized conditions transduced CD34(+) cells were efficiently engrafted into SCID-hu mice and gave rise to B and T cell progeny, demonstrating the maintenance of in vivo lymphoid reconstitution capacity. The protocol based on the T/F/S + IL-3 combination was included in a gene therapy clinical trial for ADA-SCID, resulting in long-term engraftment of stem/progenitor cells. Remarkably, gene-corrected BM CD34(+) cells obtained from one patient 4 and 11 months after gene therapy were capable of repopulating the lymphoid compartment of SCID-hu hosts.


Loss of the Fanconi anemia-associated protein NIPA causes bone marrow failure.

  • Stefanie Kreutmair‎ et al.
  • The Journal of clinical investigation‎
  • 2020‎

Inherited bone marrow failure syndromes (IBMFSs) are a heterogeneous group of disorders characterized by defective hematopoiesis, impaired stem cell function, and cancer susceptibility. Diagnosis of IBMFS presents a major challenge due to the large variety of associated phenotypes, and novel, clinically relevant biomarkers are urgently needed. Our study identified nuclear interaction partner of ALK (NIPA) as an IBMFS gene, as it is significantly downregulated in a distinct subset of myelodysplastic syndrome-type (MDS-type) refractory cytopenia in children. Mechanistically, we showed that NIPA is major player in the Fanconi anemia (FA) pathway, which binds FANCD2 and regulates its nuclear abundance, making it essential for a functional DNA repair/FA/BRCA pathway. In a knockout mouse model, Nipa deficiency led to major cell-intrinsic defects, including a premature aging phenotype, with accumulation of DNA damage in hematopoietic stem cells (HSCs). Induction of replication stress triggered a reduction in and functional decline of murine HSCs, resulting in complete bone marrow failure and death of the knockout mice with 100% penetrance. Taken together, the results of our study add NIPA to the short list of FA-associated proteins, thereby highlighting its potential as a diagnostic marker and/or possible target in diseases characterized by hematopoietic failure.


Oligomeric self-association contributes to E2A-PBX1-mediated oncogenesis.

  • Chiou-Hong Lin‎ et al.
  • Scientific reports‎
  • 2019‎

The PBX1 homeodomain transcription factor is converted by t(1;19) chromosomal translocations in acute leukemia into the chimeric E2A-PBX1 oncoprotein. Fusion with E2A confers potent transcriptional activation and constitutive nuclear localization, bypassing the need for dimerization with protein partners that normally stabilize and regulate import of PBX1 into the nucleus, but the mechanisms underlying its oncogenic activation are incompletely defined. We demonstrate here that E2A-PBX1 self-associates through the PBX1 PBC-B domain of the chimeric protein to form higher-order oligomers in t(1;19) human leukemia cells, and that this property is required for oncogenic activity. Structural and functional studies indicate that self-association facilitates the binding of E2A-PBX1 to DNA. Mutants unable to self-associate are transformation defective, however their oncogenic activity is rescued by the synthetic oligomerization domain of FKBP, which confers conditional transformation properties on E2A-PBX1. In contrast to self-association, PBX1 protein domains that mediate interactions with HOX DNA-binding partners are dispensable. These studies suggest that oligomeric self-association may compensate for the inability of monomeric E2A-PBX1 to stably bind DNA and circumvents protein interactions that otherwise modulate PBX1 stability, nuclear localization, DNA binding, and transcriptional activity. The unique dependence on self-association for E2A-PBX1 oncogenic activity suggests potential approaches for mechanism-based targeted therapies.


Bmi-1 regulation of INK4A-ARF is a downstream requirement for transformation of hematopoietic progenitors by E2a-Pbx1.

  • Kevin S Smith‎ et al.
  • Molecular cell‎
  • 2003‎

Loss-of-function alterations of INK4A are commonly observed in lymphoid malignancies, but are consistently absent in pre-B cell leukemias induced by the chimeric oncoprotein E2a-Pbx1 created by t(1;19) chromosomal translocations. We report here that experimental induction of E2a-Pbx1 enhances expression of BMI-1, a lymphoid oncogene whose product functions as a transcriptional repressor of the INK4A-ARF tumor suppressor locus. Bmi-1-deficient hematopoietic progenitors are resistant to transformation by E2a-Pbx1; however, the requirement for Bmi-1 is alleviated in cells deficient for both Bmi-1 and INK4A-ARF. Furthermore, the adverse effects of E2a-Pbx1 on pre-B cell survival and differentiation are partially bypassed by forced expression of p16(Ink4a). These results link E2a-Pbx1 with Bmi-1 on an oncogenic pathway that is likely to play a role in the pathogenesis of human lymphoid leukemias through downregulation of the INK4A-ARF gene.


A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription.

  • Akihiko Yokoyama‎ et al.
  • Cancer cell‎
  • 2010‎

AF4 and ENL family proteins are frequently fused with MLL, and they comprise a higher order complex (designated AEP) containing the P-TEFb transcription elongation factor. Here, we show that AEP is normally recruited to MLL-target chromatin to facilitate transcription. In contrast, MLL oncoproteins fused with AEP components constitutively form MLL/AEP hybrid complexes to cause sustained target gene expression, which leads to transformation of hematopoietic progenitors. Furthermore, MLL-AF6, an MLL fusion with a cytoplasmic protein, does not form such hybrid complexes, but nevertheless constitutively recruits AEP to target chromatin via unknown alternative mechanisms. Thus, AEP recruitment is an integral part of both physiological and pathological MLL-dependent transcriptional pathways. Bypass of its normal recruitment mechanisms is the strategy most frequently used by MLL oncoproteins.


Menin critically links MLL proteins with LEDGF on cancer-associated target genes.

  • Akihiko Yokoyama‎ et al.
  • Cancer cell‎
  • 2008‎

Menin displays the unique ability to either promote oncogenic function in the hematopoietic lineage or suppress tumorigenesis in the endocrine lineage; however, its molecular mechanism of action has not been defined. We demonstrate here that these discordant functions are unified by menin's ability to serve as a molecular adaptor that physically links the MLL (mixed-lineage leukemia) histone methyltransferase with LEDGF (lens epithelium-derived growth factor), a chromatin-associated protein previously implicated in leukemia, autoimmunity, and HIV-1 pathogenesis. LEDGF is required for both MLL-dependent transcription and leukemic transformation. Conversely, a subset of menin mutations in multiple endocrine neoplasia type 1 patients abrogate interaction with LEDGF while preserving MLL interaction but nevertheless compromise MLL/menin-dependent functions. Thus, LEDGF critically associates with MLL and menin at the nexus of transcriptional pathways that are recurrently targeted in diverse diseases.


Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence.

  • Francesca Ficara‎ et al.
  • Cell stem cell‎
  • 2008‎

Self-renewal is a defining characteristic of stem cells; however, the molecular pathways underlying its regulation are poorly understood. Here, we demonstrate that conditional inactivation of the Pbx1 proto-oncogene in the hematopoietic compartment results in a progressive loss of long-term hematopoietic stem cells (LT-HSCs) that is associated with concomitant reduction in their quiescence, leading to a defect in the maintenance of self-renewal as assessed by serial transplantation. Transcriptional profiling revealed that multiple stem cell maintenance factors are perturbed in Pbx1-deficient LT-HSCs, which prematurely express a large subset of genes, including cell-cycle regulators, normally expressed in non-self-renewing multipotent progenitors. A significant proportion of Pbx1-dependent genes is associated with the TGF-beta pathway, which serves a major role in maintaining HSC quiescence. Prospectively isolated, Pbx1-deficient LT-HSCs display altered transcriptional responses to TGF-beta stimulation in vitro, suggesting a possible mechanism through which Pbx1 maintenance of stem cell quiescence may in part be achieved.


Fusion between cancer cells and macrophages occurs in a murine model of spontaneous neu+ breast cancer without increasing its metastatic potential.

  • Michela Lizier‎ et al.
  • Oncotarget‎
  • 2016‎

Cell fusion between neoplastic and normal cells has been suggested to play a role in the acquisition of a malignant phenotype. Several studies have pointed to the macrophage as the normal partner in this fusion, suggesting that the fused cells could acquire new invasive properties and become able to disseminate to distant organs. However, this conclusion is mainly based on studies with transplantable cell lines. We tested the occurrence of cell fusion in the MMTV-neu model of mouse mammary carcinoma. In the first approach, we generated aggregation chimeras between GFP/neu and RFP/neu embryos. Tumor cells would display both fluorescent proteins only if cell fusion with normal cells occurred. In addition, if cell fusion conferred a growth/dissemination advantage, cells with both markers should be detectable in lung metastases at increased frequency. We confirmed that fused cells are present at low but consistent levels in primary neoplasms and that the macrophage is the normal partner in the fusion events. Similar results were obtained using a second approach in which bone marrow from mice carrying the Cre transgene was transplanted into MMTV-neu/LoxP-tdTomato transgenic animals, in which the Tomato gene is activated only in the presence of CRE recombinase. However, no fused cells were detected in lung metastases in either model. We conclude that fusion between macrophages and tumor cells does not confer a selective advantage in our spontaneous model of breast cancer, although these data do not rule out a possible role in models in which an inflammation environment is prominent.


Conditional Expression of E2A-HLF Induces B-Cell Precursor Death and Myeloproliferative-Like Disease in Knock-In Mice.

  • Jesús Duque-Afonso‎ et al.
  • PloS one‎
  • 2015‎

Chromosomal translocations are driver mutations of human cancers, particularly leukemias. They define disease subtypes and are used as prognostic markers, for minimal residual disease monitoring and therapeutic targets. Due to their low incidence, several translocations and their biological consequences remain poorly characterized. To address this, we engineered mouse strains that conditionally express E2A-HLF, a fusion oncogene from the translocation t(17;19) associated with 1% of pediatric B-cell precursor ALL. Conditional oncogene activation and expression were directed to the B-cell compartment by the Cre driver promoters CD19 or Mb1 (Igα, CD79a), or to the hematopoietic stem cell compartment by the Mx1 promoter. E2A-HLF expression in B-cell progenitors induced hyposplenia and lymphopenia, whereas expression in hematopoietic stem/progenitor cells was embryonic lethal. Increased cell death was detected in E2A-HLF expressing cells, suggesting the need for cooperating genetic events that suppress cell death for B-cell oncogenic transformation. E2A-HLF/Mb1.Cre aged mice developed a fatal myeloproliferative-like disorder with low frequency characterized by leukocytosis, anemia, hepatosplenomegaly and organ-infiltration by mature myelocytes. In conclusion, we have developed conditional E2A-HLF knock-in mice, which provide an experimental platform to study cooperating genetic events and further elucidate translational biology in cross-species comparative studies.


Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells.

  • Tim C P Somervaille‎ et al.
  • Cell stem cell‎
  • 2009‎

The genetic programs that promote retention of self-renewing leukemia stem cells (LSCs) at the apex of cellular hierarchies in acute myeloid leukemia (AML) are not known. In a mouse model of human AML, LSCs exhibit variable frequencies that correlate with the initiating MLL oncogene and are maintained in a self-renewing state by a transcriptional subprogram more akin to that of embryonic stem cells (ESCs) than to that of adult stem cells. The transcription/chromatin regulatory factors Myb, Hmgb3, and Cbx5 are critical components of the program and suffice for Hoxa/Meis-independent immortalization of myeloid progenitors when coexpressed, establishing the cooperative and essential role of an ESC-like LSC maintenance program ancillary to the leukemia-initiating MLL/Hox/Meis program. Enriched expression of LSC maintenance and ESC-like program genes in normal myeloid progenitors and poor-prognosis human malignancies links the frequency of aberrantly self-renewing progenitor-like cancer stem cells (CSCs) to prognosis in human cancer.


Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia.

  • Tim C P Somervaille‎ et al.
  • Cancer cell‎
  • 2006‎

Using a mouse model of human acute myeloid leukemia (AML) induced by the MLL-AF9 oncogene, we demonstrate that colony-forming cells (CFCs) in the bone marrow and spleen of leukemic mice are also leukemia stem cells (LSCs). These self-renewing cells (1) are frequent, accounting for 25%-30% of myeloid lineage cells at late-stage disease; (2) generate a phenotypic, morphologic, and functional leukemia cell hierarchy; (3) express mature myeloid lineage-specific antigens; and (4) exhibit altered microenvironmental interactions by comparison with the oncogene-immortalized CFCs that initiated the disease. Therefore, the LSCs responsible for sustaining, expanding, and regenerating MLL-AF9 AML are downstream myeloid lineage cells, which have acquired an aberrant Hox-associated self-renewal program as well as other biologic features of hematopoietic stem cells.


Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants.

  • Nicole L Welch‎ et al.
  • Nature medicine‎
  • 2022‎

The coronavirus disease 2019 (COVID-19) pandemic has demonstrated a clear need for high-throughput, multiplexed and sensitive assays for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses and their emerging variants. Here, we present a cost-effective virus and variant detection platform, called microfluidic Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (mCARMEN), which combines CRISPR-based diagnostics and microfluidics with a streamlined workflow for clinical use. We developed the mCARMEN respiratory virus panel to test for up to 21 viruses, including SARS-CoV-2, other coronaviruses and both influenza strains, and demonstrated its diagnostic-grade performance on 525 patient specimens in an academic setting and 166 specimens in a clinical setting. We further developed an mCARMEN panel to enable the identification of 6 SARS-CoV-2 variant lineages, including Delta and Omicron, and evaluated it on 2,088 patient specimens with near-perfect concordance to sequencing-based variant classification. Lastly, we implemented a combined Cas13 and Cas12 approach that enables quantitative measurement of SARS-CoV-2 and influenza A viral copies in samples. The mCARMEN platform enables high-throughput surveillance of multiple viruses and variants simultaneously, enabling rapid detection of SARS-CoV-2 variants.


Differential Depletion of Bone Marrow Resident B-ALL after Systemic Administration of Endosomal TLR Agonists.

  • Sumin Jo‎ et al.
  • Cancers‎
  • 2020‎

Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. While frontline chemotherapy regimens are generally very effective, the prognosis for patients whose leukemia returns remains poor. The presence of measurable residual disease (MRD) in bone marrow at the completion of induction therapy is the strongest predictor of relapse, suggesting that strategies to eliminate the residual leukemic blasts from this niche could reduce the incidence of recurrence. We have previously reported that toll-like receptor (TLR) agonists achieve durable T cell-mediated protection in transplantable cell line-based models of B cell precursor leukemia (B-ALL). However, the successful application of TLR agonist therapy in an MRD setting would require the induction of anti-leukemic immune activity specifically in the bone marrow, a site of the chemotherapy-resistant leukemic blasts. In this study, we compare the organ-specific depletion of human and mouse primary B-ALL cells after systemic administration of endosomal TLR agonists. Despite comparable splenic responses, only the TLR9 agonist induced strong innate immune responses in the bone marrow and achieved a near-complete elimination of B-ALL cells. This pattern of response was associated with the most significantly prolonged disease-free survival. Overall, our findings identify innate immune activity in the bone marrow that is associated with durable TLR-induced protection against B-ALL outgrowth.


Age and ligand specificity influence the outcome of pathogen engagement on preleukemic and leukemic B-cell precursor populations.

  • Tanmaya Atre‎ et al.
  • Blood advances‎
  • 2023‎

Common infections have long been proposed to play a role in the development of pediatric B-cell acute lymphoblastic leukemia (B-ALL). However, epidemiologic studies report contradictory effects of infection exposure on subsequent B-ALL risk, and no specific pathogen has been definitively linked to the disease. A unifying mechanism to explain the divergent outcomes could inform disease prevention strategies. We previously reported that the pattern recognition receptor (PRR) ligand Poly(I:C) exerted effects on B-ALL cells that were distinct from those observed with other nucleic acid-based PRR ligands. Here, using multiple double-stranded RNA (dsRNA) moieties, we show that the overall outcome of exposure to Poly(I:C) reflects the balance of opposing responses induced by its ligation to endosomal and cytoplasmic receptors. This PRR response biology is shared between mouse and human B-ALL and can increase leukemia-initiating cell burden in vivo during the preleukemia phase of B-ALL, primarily through tumor necrosis factor α signaling. The age of the responding immune system further influences the impact of dsRNA exposure on B-ALL cells in both mouse and human settings. Overall, our study demonstrates that potentially proleukemic and antileukemic effects can each be generated by the stimulation of pathogen recognition pathways and indicates a mechanistic explanation for the contrasting epidemiologic associations reported for infection exposure and B-ALL.


Functional Characterization of Transforming Growth Factor-β Signaling in Dasatinib Resistance and Pre-BCR+ Acute Lymphoblastic Leukemia.

  • Gila Mostufi-Zadeh-Haghighi‎ et al.
  • Cancers‎
  • 2023‎

The multi-kinase inhibitor dasatinib has been implicated to be effective in pre-B-cell receptor (pre-BCR)-positive acute lymphoblastic leukemia (ALL) expressing the E2A-PBX1 fusion oncoprotein. The TGFβ signaling pathway is involved in a wide variety of cellular processes, including embryonic development and cell homeostasis, and it can have dual roles in cancer: suppressing tumor growth at early stages and mediating tumor progression at later stages. In this study, we identified the upregulation of the TGFβ signaling pathway in our previously generated human dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells using global transcriptomic analysis. We confirm the upregulation of the TGFβ pathway member SMAD3 at the transcriptional and translational levels in dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells. Hence, dasatinib blocks, at least partially, TGFβ-induced SMAD3 phosphorylation in several B-cell precursor (BCP) ALL cell lines as well as in dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells. Activation of the TGFβ signaling pathway by TGF-β1 leads to growth inhibition by cell cycle arrest at the G0/G1 stage, increase in apoptosis and transcriptional changes of SMAD-targeted genes, e.g. c-MYC downregulation, in pre-BCR+/E2A-PBX1+ ALL cells. These results provide a better understanding about the role that the TGFβ signaling pathway plays in leukemogenesis of BCP-ALL as well as in secondary drug resistance to dasatinib.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: