Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Presence of atypical porcine pestivirus (APPV) genomes in newborn piglets correlates with congenital tremor.

  • Alexander Postel‎ et al.
  • Scientific reports‎
  • 2016‎

Pestiviruses are highly variable RNA viruses belonging to the continuously growing family Flaviviridae. A genetically very distinct pestivirus was recently discovered in the USA, designated atypical porcine pestivirus (APPV). Here, a screening of 369 sera from apparently healthy adult pigs demonstrated the existence of APPV in Germany with an estimated individual prevalence of 2.4% and ~10% at farm level. Additionally, APPV genomes were detected in newborn piglets affected by congenital tremor (CT), but genomes were absent in unaffected piglets. High loads of genomes were identified in glandular epithelial cells, follicular centers of lymphoid organs, the inner granular cell layer of the cerebellum, as well as in the trigeminal and spinal ganglia. Retrospective analysis of cerebellum samples from 2007 demonstrated that APPV can be found in piglets with CT of unsolved aetiology. Determination of the first European APPV complete polyprotein coding sequence revealed 88.2% nucleotide identity to the APPV sequence from the USA. APPV sequences derived from different regions in Germany demonstrated to be highly variable. Taken together, the results of this study strongly suggest that the presence of APPV genomes in newborn piglets correlates with CT, while no association with clinical disease could be observed in viremic adult pigs.


Comparison of Reported Spinal Cord Lesions in Progressive Multiple Sclerosis with Theiler's Murine Encephalomyelitis Virus Induced Demyelinating Disease.

  • Eva Leitzen‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Spinal cord (SC) lesions in Theiler's murine encephalomyelitis virus induced demyelinating disease (TMEV-IDD) resemble important features of brain lesions in progressive multiple sclerosis (MS) including inflammation, demyelination, and axonal damage. The aim of the present study was a comparison of SC lesions in MS and TMEV-IDD focusing on spatial and temporal distribution of demyelination, inflammation, SC atrophy (SCA), and axonal degeneration/loss in major descending motor pathways.


Virus-triggered spinal cord demyelination is followed by a peripheral neuropathy resembling features of Guillain-Barré Syndrome.

  • Eva Leitzen‎ et al.
  • Scientific reports‎
  • 2019‎

Theiler's murine encephalomyelitis virus (TMEV)-induces a demyelinating disease in the spinal cord (SC) of susceptible but not in resistant (B6) mouse strains. The aim of the present study was to induce SC demyelination and a peripheral neuropathy in resistant mice by switching the infection site from cerebrum to SC. B6 mice were intraspinally inoculated with TMEV. Infected mice showed clinical signs starting at 7 days post infection (dpi). Histopathology revealed a mononuclear myelitis, centred on the injection site at 3 dpi with subsequent antero- and retrograde spread, accompanied by demyelination and axonal damage within the SC. Virus protein was detected in the SC at all time points. SC inflammation decreased until the end of the investigation period (28 dpi). Concurrent with the amelioration of SC inflammation, the emergence of a peripheral neuropathy, characterized by axonal damage, demyelination and macrophage infiltration, contributing to persistent clinical sings, was observed. Intraspinal TMEV infection of resistant mice induced inflammation, demyelination and delayed viral clearance in the spinal cord and more interestingly, subsequent, virus-triggered inflammation and degeneration within the PN associated with dramatic and progressive clinical signs. The lesions observed in the PN resemble important features of Guillain-Barré syndrome, especially of acute motor/motor-sensory axonal forms.


Double-edged effects of tamoxifen-in-oil-gavage on an infectious murine model for multiple sclerosis.

  • Kirsten Hülskötter‎ et al.
  • Brain pathology (Zurich, Switzerland)‎
  • 2021‎

Tamoxifen gavage is a commonly used method to induce genetic modifications in cre-loxP systems. As a selective estrogen receptor modulator (SERM), the compound is known to have immunomodulatory and neuroprotective properties in non-infectious central nervous system (CNS) disorders. It can even cause complete prevention of lesion development as seen in experimental autoimmune encephalitis (EAE). The effect on infectious brain disorders is scarcely investigated. In this study, susceptible SJL mice were infected intracerebrally with Theiler's murine encephalomyelitis virus (TMEV) and treated three times with a tamoxifen-in-oil-gavage (TOG), resembling an application scheme for genetically modified mice, starting at 0, 18, or 38 days post infection (dpi). All mice developed 'TMEV-induced demyelinating disease' (TMEV-IDD) resulting in inflammation, axonal loss, and demyelination of the spinal cord. TOG had a positive effect on the numbers of oligodendrocytes and oligodendrocyte progenitor cells, irrespective of the time point of application, whereas late application (starting 38 dpi) was associated with increased demyelination of the spinal cord white matter 85 dpi. Furthermore, TOG had differential effects on the CD4+ and CD8+ T cell infiltration into the CNS, especially a long lasting increase of CD8+ cells was detected in the inflamed spinal cord, depending of the time point of TOG application. Number of TMEV-positive cells, astrogliosis, astrocyte phenotype, apoptosis, clinical score, and motor function were not measurably affected. These data indicate that tamoxifen gavage has a double-edged effect on TMEV-IDD with the promotion of oligodendrocyte differentiation and proliferation, but also increased demyelination, depending on the time point of application. The data of this study suggest that tamoxifen has also partially protective functions in infectious CNS disease. These effects should be considered in experimental studies using the cre-loxP system, especially in models investigating neuropathologies.


Phenotyping the virulence of SARS-CoV-2 variants in hamsters by digital pathology and machine learning.

  • Gavin R Meehan‎ et al.
  • PLoS pathogens‎
  • 2023‎

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve throughout the coronavirus disease-19 (COVID-19) pandemic, giving rise to multiple variants of concern (VOCs) with different biological properties. As the pandemic progresses, it will be essential to test in near real time the potential of any new emerging variant to cause severe disease. BA.1 (Omicron) was shown to be attenuated compared to the previous VOCs like Delta, but it is possible that newly emerging variants may regain a virulent phenotype. Hamsters have been proven to be an exceedingly good model for SARS-CoV-2 pathogenesis. Here, we aimed to develop robust quantitative pipelines to assess the virulence of SARS-CoV-2 variants in hamsters. We used various approaches including RNAseq, RNA in situ hybridization, immunohistochemistry, and digital pathology, including software assisted whole section imaging and downstream automatic analyses enhanced by machine learning, to develop methods to assess and quantify virus-induced pulmonary lesions in an unbiased manner. Initially, we used Delta and Omicron to develop our experimental pipelines. We then assessed the virulence of recent Omicron sub-lineages including BA.5, XBB, BQ.1.18, BA.2, BA.2.75 and EG.5.1. We show that in experimentally infected hamsters, accurate quantification of alveolar epithelial hyperplasia and macrophage infiltrates represent robust markers for assessing the extent of virus-induced pulmonary pathology, and hence virus virulence. In addition, using these pipelines, we could reveal how some Omicron sub-lineages (e.g., BA.2.75 and EG.5.1) have regained virulence compared to the original BA.1. Finally, to maximise the utility of the digital pathology pipelines reported in our study, we developed an online repository containing representative whole organ histopathology sections that can be visualised at variable magnifications (https://covid-atlas.cvr.gla.ac.uk). Overall, this pipeline can provide unbiased and invaluable data for rapidly assessing newly emerging variants and their potential to cause severe disease.


The antiviral drug ganciclovir does not inhibit microglial proliferation and activation.

  • Thomas Skripuletz‎ et al.
  • Scientific reports‎
  • 2015‎

Ganciclovir is effective in the treatment of human infections with viruses of the Herpesviridae family. Beside antiviral properties, recently ganciclovir was described to inhibit microglial proliferation and disease severity of experimental autoimmune encephalomyelitis, an inflammatory model of multiple sclerosis. Microglial activation and proliferation are main characteristics of neuroinflammatory CNS diseases and inhibition of microglial functions might be beneficial in autoimmune diseases, or detrimental in infectious diseases. The objective of this study was to determine potential inhibitory effects of ganciclovir in three different murine animal models of CNS neuroinflammation in which microglia play an important role: Theiler´s murine encephalomyelitis, the cuprizone model of de- and remyelination, and the vesicular stomatitis virus encephalitis model. In addition, in vitro experiments with microglial cultures were performed to test the hypothesis that ganciclovir inhibits microglial proliferation. In all three animal models, neither microglial proliferation or recruitment nor disease activity was changed by ganciclovir. In vitro experiments confirmed that microglial proliferation was not affected by ganciclovir. In conclusion, our results show that the antiviral drug ganciclovir does not inhibit microglial activation and proliferation in the murine CNS.


Mesenchymal Stem Cells Form 3D Clusters Following Intraventricular Transplantation.

  • Nicole Jungwirth‎ et al.
  • Journal of molecular neuroscience : MN‎
  • 2018‎

Mesenchymal stem cells (MSCs) are regarded as an immune privileged cell type with numerous regeneration-promoting effects. The in vivo behavior of MSC and underlying mechanisms leading to their regenerative effects are largely unknown. The aims of this study were to comparatively investigate the in vivo behavior of canine (cMSC), human (hMSC), and murine MSC (mMSC) following intra-cerebroventricular transplantation. At 7 days post transplantation (dpt), clusters of cMSC, hMSC, and mMSC were detected within the ventricular system. At 49 dpt, cMSC-transplanted mice showed clusters mostly consisting of extracellular matrix lacking transplanted MSC. Similarly, hMSC-transplanted mice lacked MSC clusters at 49 dpt. Xenogeneic MSC transplantation was associated with a local T lymphocyte-dominated immune reaction at both time points. Interestingly, no associated inflammation was observed following syngeneic mMSC transplantation. In conclusion, transplanted MSC formed intraventricular cell clusters and exhibited a short life span in vivo. Xenogeneically in contrast to syngeneically transplanted MSC triggered a T cell-mediated graft rejection indicating that MSCs are not as immune privileged as previously assumed. However, MSC may mediate their effects by a "hit and run" mechanism and future studies will show whether syngeneically or xenogeneically transplanted MSCs exert better therapeutic effects in animals with CNS disease.


Pathology in Captive Wild Felids at German Zoological Gardens.

  • Johannes Junginger‎ et al.
  • PloS one‎
  • 2015‎

This retrospective study provides an overview on spontaneous diseases occurring in 38 captive wild felids submitted for necropsy by German zoological gardens between 2004 and 2013. Species included 18 tigers, 8 leopards, 7 lions, 3 cheetahs and 2 cougars with an age ranging from 0.5 to 22 years. Renal lesions, predominantly tubular alterations (intra-tubular concrements, tubular degeneration, necrosis, intra-tubular cellular debris, proteinaceous casts, dilated tubuli) followed by interstitial (lympho-plasmacytic inflammation, fibrosis, metastatic-suppurative inflammation, eosinophilic inflammation) and glomerular lesions (glomerulonephritis, glomerulosclerosis, amyloidosis) were detected in 33 out of 38 animals (87%). Tumors were found in 19 of 38 felids (50%) with 12 animals showing more than one neoplasm. The tumor prevalence increased with age. Neoplasms originated from endocrine (11), genital (8), lympho-hematopoietic (5) and alimentary organs (4) as well as the mesothelium (3). Most common neoplasms comprised uterine/ovarian leiomyomas (5/2), thyroid adenomas/adenocarcinoma (5/1), pleural mesotheliomas (3), hemangiosarcomas (2) and glossal papillomas (2). Inflammatory changes were frequently encountered in the intestine and the lung. Two young animals displayed metastatic mineralization suggestive of a vitamin D- or calcium intoxication. One tiger exhibited degenerative white matter changes consistent with an entity termed large felid leukoencephalomyelopathy. Various hyperplastic, degenerative and inflammatory changes with minor clinical significance were found in several organs. Summarized, renal lesions followed by neoplastic changes as well as inflammatory changes in lung and gastrointestinal tract represent the most frequent findings in captive wild felids living in German zoological gardens.


Effects of murine and human bone marrow-derived mesenchymal stem cells on cuprizone induced demyelination.

  • Jasmin Nessler‎ et al.
  • PloS one‎
  • 2013‎

For the treatment of patients with multiple sclerosis there are no regenerative approaches to enhance remyelination. Mesenchymal stem cells (MSC) have been proposed to exert such regenerative functions. Intravenous administration of human MSC reduced the clinical severity of experimental autoimmune encephalomyelitis (EAE), an animal model mimicking some aspects of multiple sclerosis. However, it is not clear if this effect was achieved by systemic immunomodulation or if there is an active neuroregeneration in the central nervous system (CNS). In order to investigate remyelination and regeneration in the CNS we analysed the effects of intravenously and intranasally applied murine and human bone marrow-derived MSC on cuprizone induced demyelination, a toxic animal model which allows analysis of remyelination without the influence of the peripheral immune system. In contrast to EAE no effects of MSC on de- and remyelination and glial cell reactions were found. In addition, neither murine nor human MSC entered the lesions in the CNS in this toxic model. In conclusion, MSC are not directed into CNS lesions in the cuprizone model where the blood-brain-barrier is intact and thus cannot provide support for regenerative processes.


Profiling the Expression of Endoplasmic Reticulum Stress Associated Heat Shock Proteins in Animal Epilepsy Models.

  • Marta Nowakowska‎ et al.
  • Neuroscience‎
  • 2020‎

Unfolded protein response is a signaling cascade triggered by misfolded proteins in the endoplasmic reticulum. Heat shock protein H4 (HSPH4) and A5 (HSPA5) are two chaperoning proteins present within the organelle, which target misfolded peptides during prolonged stress conditions. Epileptogenic insults and epileptic seizures are a notable source of stress on cells. To investigate whether they influence expression of these chaperones, we performed immunohistochemical stainings in brains from rats that experienced a status epilepticus (SE) as a trigger of epileptogenesis and from canine epilepsy patients. Quantification of HSPA5 and HSPH4 revealed alterations in hippocampus and parahippocampal cortex. In rats, SE induced up-regulation of HSPA5 in the piriform cortex and down-regulation of HSPA5 and HSPH4 in the hippocampus. Regionally restricted increases in expression of the two proteins has been observed in the chronic phase with spontaneous recurrent seizures. Confocal microscopy revealed a predominant expression of both proteins in neurons, no expression in microglia and circumscribed expression in astroglia. In canine patients, only up-regulation of HSPH4 expression was observed in Cornu Ammonis 1 region in animals diagnosed with structural epilepsy. This characterization of HSPA5 and HSPH4 expression provided extensive information regarding spatial and temporal alterations of the two proteins during SE-induced epileptogenesis and following epilepsy manifestations. Up-regulation of both proteins implies stress exerted on ER during these disease phases. Taken together suggest a differential impact of epileptogenesis on HSPA5 and HSPH4 expression and indicate them as a possible target for pharmacological modulation of unfolded protein response.


Delayed Astrogliosis Associated with Reduced M1 Microglia Activation in Matrix Metalloproteinase 12 Knockout Mice during Theiler's Murine Encephalomyelitis.

  • Florian Hansmann‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Theiler's murine encephalomyelitis (TME) represents a versatile animal model for studying the pathogenesis of demyelinating diseases such as multiple sclerosis. Hallmarks of TME are demyelination, astrogliosis, as well as inflammation. Previous studies showed that matrix metalloproteinase 12 knockout (Mmp12-/-) mice display an ameliorated clinical course associated with reduced demyelination. The present study aims to elucidate the impact of MMP12 deficiency in TME with special emphasis on astrogliosis, macrophages infiltrating the central nervous system (CNS), and the phenotype of microglia/macrophages (M1 or M2). SJL wild-type and Mmp12-/- mice were infected with TME virus (TMEV) or vehicle (mock) and euthanized at 28 and 98 days post infection (dpi). Immunohistochemistry or immunofluorescence of cervical and thoracic spinal cord for detecting glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba1), chemokine receptor 2 (CCR2), CD107b, CD16/32, and arginase I was performed and quantitatively evaluated. Statistical analyses included the Kruskal⁻Wallis test followed by Mann⁻Whitney U post hoc tests. TMEV-infected Mmp12-/- mice showed transiently reduced astrogliosis in association with a strong trend (p = 0.051) for a reduced density of activated/reactive microglia/macrophages compared with wild-type mice at 28 dpi. As astrocytes are an important source of cytokine production, including proinflammatory cytokines triggering or activating phagocytes, the origin of intralesional microglia/macrophages as well as their phenotype were determined. Only few phagocytes in wild-type and Mmp12-/- mice expressed CCR2, indicating that the majority of phagocytes are represented by microglia. In parallel to the reduced density of activated/reactive microglia at 98 dpi, TMEV-infected Mmp12-/- showed a trend (p = 0.073) for a reduced density of M1 (CD16/32- and CD107b-positive) microglia, while no difference regarding the density of M2 (arginase I- and CD107b-positive) cells was observed. However, a dominance of M1 cells was detected in the spinal cord of TMEV-infected mice at all time points. Reduced astrogliosis in Mmp12-/- mice was associated with a reduced density of activated/reactive microglia and a trend for a reduced density of M1 cells. This indicates that MMP12 plays an important role in microglia activation, polarization, and migration as well as astrogliosis and microglia/astrocyte interaction.


Comparison of Theiler's Murine Encephalomyelitis Virus Induced Spinal Cord and Peripheral Nerve Lesions Following Intracerebral and Intraspinal Infection.

  • Wen Jin‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Hallmarks of Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD) include spinal cord (SC) inflammation, demyelination and axonal damage occurring approximately 5-8 weeks after classical intracerebral (i.c.) infection. The aim of this study was to elucidate the consequences of intraspinal (i.s.) TMEV infection and a direct comparison of classical i.c. and intraspinal infection. Swiss Jim Lambert (SJL)-mice were i.s. infected with the BeAn strain of TMEV. Clinical investigations including a scoring system and rotarod analysis were performed on a regular basis. Necropsies were performed at 3, 7, 14, 28 and 63 days post infection (dpi) following i.s. and at 4, 7, 14, 28, 56, 98, 147 and 196 dpi following i.c. infection. Serial sections of formalin-fixed, paraffin-embedded SC and peripheral nerves (PN) were investigated using hematoxylin and eosin (HE) and immunohistochemistry. I.s. infected mice developed clinical signs and a deterioration of motor coordination approximately 12 weeks earlier than i.c. infected animals. SC inflammation, demyelination and axonal damage occurred approximately 6 weeks earlier in i.s. infected animals. Interestingly, i.s. infected mice developed PN lesions, characterized by vacuolation, inflammation, demyelination and axonal damage, which was not seen following i.c. infection. The i.s. infection model offers the advantage of a significantly earlier onset of clinical signs, inflammatory and demyelinating SC lesions and additionally enables the investigation of virus-mediated PN lesions.


Comparison of Different In Situ Hybridization Techniques for the Detection of Various RNA and DNA Viruses.

  • Vanessa M Pfankuche‎ et al.
  • Viruses‎
  • 2018‎

In situ hybridization (ISH) is a technique to determine potential correlations between viruses and lesions. The aim of the study was to compare ISH techniques for the detection of various viruses in different tissues. Tested RNA viruses include atypical porcine pestivirus (APPV) in the cerebellum of pigs, equine and bovine hepacivirus (EqHV, BovHepV) in the liver of horses and cattle, respectively, and Schmallenberg virus (SBV) in the cerebrum of goats. Examined DNA viruses comprise canine bocavirus 2 (CBoV-2) in the intestine of dogs, porcine bocavirus (PBoV) in the spinal cord of pigs and porcine circovirus 2 (PCV-2) in cerebrum, lymph node, and lung of pigs. ISH with self-designed digoxigenin-labelled RNA probes revealed a positive signal for SBV, CBoV-2, and PCV-2, whereas it was lacking for APPV, BovHepV, EqHV, and PBoV. Commercially produced digoxigenin-labelled DNA probes detected CBoV-2 and PCV-2, but failed to detect PBoV. ISH with a commercially available fluorescent ISH (FISH)-RNA probe mix identified nucleic acids of all tested viruses. The detection rate and the cell-associated positive area using the FISH-RNA probe mix was highest compared to the results using other probes and protocols, representing a major benefit of this method. Nevertheless, there are differences in costs and procedure time.


Transcriptomic meta-analysis of multiple sclerosis and its experimental models.

  • Barbara B R Raddatz‎ et al.
  • PloS one‎
  • 2014‎

Multiple microarray analyses of multiple sclerosis (MS) and its experimental models have been published in the last years.


Mesenchymal stem cells do not exert direct beneficial effects on CNS remyelination in the absence of the peripheral immune system.

  • Laura Salinas Tejedor‎ et al.
  • Brain, behavior, and immunity‎
  • 2015‎

Remyelination is the natural repair mechanism in demyelinating disorders such as multiple sclerosis (MS) and it was proposed that it might protect from axonal loss. For unknown reasons, remyelination is often incomplete or fails in MS lesions and therapeutic treatments to enhance remyelination are not available. Recently, the transplantation of exogenous mesenchymal stem cells (MSC) has emerged as a promising tool to enhance repair processes. This included the animal model experimental autoimmune encephalomyelitis (EAE), a commonly used model for the autoimmune mechanisms of MS. However, in EAE it is not clear if the beneficial effect of MSC derives from a direct influence on brain resident cells or if this is an indirect phenomenon via modulation of the peripheral immune system. The aim of this study was to determine potential regenerative functions of MSC in the toxic cuprizone model of demyelination that allows studying direct effects on de- and remyelination without the influence of the peripheral immune system. MSC from three different species (human, murine, canine) were transplanted either intraventricularly into the cerebrospinal fluid or directly into the lesion of the corpus callosum at two time points: at the onset of oligodendrocyte progenitor cell (OPC) proliferation or the peak of OPC proliferation during cuprizone induced demyelination. Our results show that MSC did not exert any regenerative effects after cuprizone induced demyelination and oligodendrocyte loss. During remyelination, MSC did not influence the dynamics of OPC proliferation and myelin formation. In conclusion, MSC did not exert direct regenerative functions in a mouse model where peripheral immune cells and especially T lymphocytes do not play a role. We thus suggest that the peripheral immune system is required for MSC to exert their effects and this is independent from a direct influence of the central nervous system.


Cuprizone inhibits demyelinating leukomyelitis by reducing immune responses without virus exacerbation in an infectious model of multiple sclerosis.

  • Vanessa Herder‎ et al.
  • Journal of neuroimmunology‎
  • 2012‎

Multiple sclerosis is one of the most common demyelinating central nervous system diseases in young adults. Theiler's murine encephalomyelitis (TME) is a widely used virus-induced murine model for human myelin disorders. Immunosuppressive approaches generally reduce antiviral immunity and therefore increase virus dissemination with clinical worsening. In the present study, the progressive course of TME was significantly delayed due to a five-week cuprizone feeding period. Cuprizone was able to minimize demyelinating leukomyelitis without virus exacerbation. This phenomenon is supposed to be a consequence of selective inhibition of detrimental inflammatory responses with maintained protective immunity against the virus.


Proficiency Testing of Virus Diagnostics Based on Bioinformatics Analysis of Simulated In Silico High-Throughput Sequencing Data Sets.

  • Annika Brinkmann‎ et al.
  • Journal of clinical microbiology‎
  • 2019‎

Quality management and independent assessment of high-throughput sequencing-based virus diagnostics have not yet been established as a mandatory approach for ensuring comparable results. The sensitivity and specificity of viral high-throughput sequence data analysis are highly affected by bioinformatics processing using publicly available and custom tools and databases and thus differ widely between individuals and institutions. Here we present the results of the COMPARE [Collaborative Management Platform for Detection and Analyses of (Re-)emerging and Foodborne Outbreaks in Europe] in silico virus proficiency test. An artificial, simulated in silico data set of Illumina HiSeq sequences was provided to 13 different European institutes for bioinformatics analysis to identify viral pathogens in high-throughput sequence data. Comparison of the participants' analyses shows that the use of different tools, programs, and databases for bioinformatics analyses can impact the correct identification of viral sequences from a simple data set. The identification of slightly mutated and highly divergent virus genomes has been shown to be most challenging. Furthermore, the interpretation of the results, together with a fictitious case report, by the participants showed that in addition to the bioinformatics analysis, the virological evaluation of the results can be important in clinical settings. External quality assessment and proficiency testing should become an important part of validating high-throughput sequencing-based virus diagnostics and could improve the harmonization, comparability, and reproducibility of results. There is a need for the establishment of international proficiency testing, like that established for conventional laboratory tests such as PCR, for bioinformatics pipelines and the interpretation of such results.


Schmallenberg virus in central nervous system of ruminants.

  • Kerstin Hahn‎ et al.
  • Emerging infectious diseases‎
  • 2013‎

No abstract available


Lyz2-Cre-Mediated Genetic Deletion of Septin7 Reveals a Role of Septins in Macrophage Cytokinesis and Kras-Driven Tumorigenesis.

  • Manoj B Menon‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

By crossing septin7-floxed mice with Lyz2-Cre mice carrying the Cre recombinase inserted in the Lysozyme-M (Lyz2) gene locus we aimed the specific deletion of septin7 in myeloid cells, such as monocytes, macrophages and granulocytes. Septin7 flox/flox :Lyz2-Cre mice show no alterations in the myeloid compartment. Septin7-deleted macrophages (BMDMs) were isolated and analyzed. The lack of Septin7 expression was confirmed and a constitutive double-nucleation was detected in Septin7-deficient BMDMs indicating a defect in macrophage cytokinesis. However, phagocytic function of macrophages as judged by uptake of labelled E. coli particles and LPS-stimulated macrophage activation as judged by induction of TNF mRNA expression and TNF secretion were not compromised. In addition to myeloid cells, Lyz2-Cre is also active in type II pneumocytes (AT2 cells). We monitored lung adenocarcinoma formation in these mice by crossing them with the conditional knock-in Kras-LSL-G12D allele. Interestingly, we found that control mice without septin7 depletion die after 3-5 weeks, while the Septin7-deficient animals survived 11 weeks or even longer. Control mice sacrificed in the age of 4 weeks display a bronchiolo-alveolar hyperplasia with multiple adenomas, whereas the Septin7-deficient animals of the same age are normal or show only a weak multifocal brochiolo-alveolar hyperplasia. Our findings indicate an essential role of Septin7 in macrophage cytokinesis but not in macrophage function. Furthermore, septin7 seems absolutely essential for oncogenic Kras-driven lung tumorigenesis making it a potential target for anti-tumor interventions.


Molecular alterations of the TLR4-signaling cascade in canine epilepsy.

  • Eva-Lotta von Rüden‎ et al.
  • BMC veterinary research‎
  • 2020‎

Cumulating evidence from rodent models points to a pathophysiological role of inflammatory signaling in the epileptic brain with Toll-like receptor-4 signaling acting as one key factor. However, there is an apparent lack of information about expression alterations affecting this pathway in canine patients with epilepsy. Therefore, we have analyzed the expression pattern of Toll-like receptor 4 and its ligands in brain tissue of canine patients with structural or idiopathic epilepsy in comparison with tissue from laboratory dogs or from owner-kept dogs without neurological diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: