Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Functional interplay between the 53BP1-ortholog Rad9 and the Mre11 complex regulates resection, end-tethering and repair of a double-strand break.

  • Matteo Ferrari‎ et al.
  • PLoS genetics‎
  • 2015‎

The Mre11-Rad50-Xrs2 nuclease complex, together with Sae2, initiates the 5'-to-3' resection of Double-Strand DNA Breaks (DSBs). Extended 3' single stranded DNA filaments can be exposed from a DSB through the redundant activities of the Exo1 nuclease and the Dna2 nuclease with the Sgs1 helicase. In the absence of Sae2, Mre11 binding to a DSB is prolonged, the two DNA ends cannot be kept tethered, and the DSB is not efficiently repaired. Here we show that deletion of the yeast 53BP1-ortholog RAD9 reduces Mre11 binding to a DSB, leading to Rad52 recruitment and efficient DSB end-tethering, through an Sgs1-dependent mechanism. As a consequence, deletion of RAD9 restores DSB repair either in absence of Sae2 or in presence of a nuclease defective MRX complex. We propose that, in cells lacking Sae2, Rad9/53BP1 contributes to keep Mre11 bound to a persistent DSB, protecting it from extensive DNA end resection, which may lead to potentially deleterious DNA deletions and genome rearrangements.


MosChito rafts as a promising biocontrol tool against larvae of the common house mosquito, Culex pipiens.

  • Agata Negri‎ et al.
  • PloS one‎
  • 2023‎

Mosquito control is of paramount importance, in particular, in light of the major environmental alterations associated with human activities, from climate change to the altered distribution of pathogens, including those transmitted by Arthropods. Here, we used the common house mosquito, Culex pipiens to test the efficacy of MosChito raft, a novel tool for mosquito larval control. MosChito raft is a floating hydrogel matrix, composed of chitosan, genipin and yeast cells, as bio-attractants, developed for the delivery of a Bacillus thuringiensis israeliensis (Bti)-based bioinsecticide to mosquito larvae. To this aim, larvae of Cx. pipiens were collected in field in Northern Italy and a novel colony of mosquito species (hereafter: Trescore strain) was established. MosChito rafts, containing the Bti-based formulation, were tested on Cx. pipiens larvae from the Trescore strain to determine the doses to be used in successive experiments. Thus, bioassays with MosChito rafts were carried out under semi-field conditions, both on larvae from the Trescore strain and on pools of larvae collected from the field, at different developmental stages. Our results showed that MosChito raft is effective against Cx. pipiens. In particular, the observed mortality was over 50% after two days exposure of the larvae to MosChito rafts, and over 70-80% at days three to four, in both laboratory and wild larvae. In conclusion, our results point to the MosChito raft as a promising tool for the eco-friendly control of a mosquito species that is not only a nuisance insect but is also an important vector of diseases affecting humans and animals.


Elevated levels of the polo kinase Cdc5 override the Mec1/ATR checkpoint in budding yeast by acting at different steps of the signaling pathway.

  • Roberto Antonio Donnianni‎ et al.
  • PLoS genetics‎
  • 2010‎

Checkpoints are surveillance mechanisms that constitute a barrier to oncogenesis by preserving genome integrity. Loss of checkpoint function is an early event in tumorigenesis. Polo kinases (Plks) are fundamental regulators of cell cycle progression in all eukaryotes and are frequently overexpressed in tumors. Through their polo box domain, Plks target multiple substrates previously phosphorylated by CDKs and MAPKs. In response to DNA damage, Plks are temporally inhibited in order to maintain the checkpoint-dependent cell cycle block while their activity is required to silence the checkpoint response and resume cell cycle progression. Here, we report that, in budding yeast, overproduction of the Cdc5 polo kinase overrides the checkpoint signaling induced by double strand DNA breaks (DSBs), preventing the phosphorylation of several Mec1/ATR targets, including Ddc2/ATRIP, the checkpoint mediator Rad9, and the transducer kinase Rad53/CHK2. We also show that high levels of Cdc5 slow down DSB processing in a Rad9-dependent manner, but do not prevent the binding of checkpoint factors to a single DSB. Finally, we provide evidence that Sae2, the functional ortholog of human CtIP, which regulates DSB processing and inhibits checkpoint signaling, is regulated by Cdc5. We propose that Cdc5 interferes with the checkpoint response to DSBs acting at multiple levels in the signal transduction pathway and at an early step required to resect DSB ends.


Senataxin Ortholog Sen1 Limits DNA:RNA Hybrid Accumulation at DNA Double-Strand Breaks to Control End Resection and Repair Fidelity.

  • Chetan C Rawal‎ et al.
  • Cell reports‎
  • 2020‎

An important but still enigmatic function of DNA:RNA hybrids is their role in DNA double-strand break (DSB) repair. Here, we show that Sen1, the budding yeast ortholog of the human helicase Senataxin, is recruited at an HO endonuclease-induced DSB and limits the local accumulation of DNA:RNA hybrids. In the absence of Sen1, hybrid accumulation proximal to the DSB promotes increased binding of the Ku70-80 (KU) complex at the break site, mutagenic non-homologous end joining (NHEJ), micro-homology-mediated end joining (MMEJ), and chromosome translocations. We also show that homology-directed recombination (HDR) by gene conversion is mostly proficient in sen1 mutants after single DSB. However, in the absence of Sen1, DNA:RNA hybrids, Mre11, and Dna2 initiate resection through a non-canonical mechanism. We propose that this resection mechanism through local DNA:RNA hybrids acts as a backup to prime HDR when canonical pathways are altered, but at the expense of genome integrity.


Reduction of hRNase H2 activity in Aicardi-Goutières syndrome cells leads to replication stress and genome instability.

  • Sara Pizzi‎ et al.
  • Human molecular genetics‎
  • 2015‎

Aicardi-Goutières syndrome (AGS) is an inflammatory encephalopathy caused by defective nucleic acids metabolism. Over 50% of AGS mutations affect RNase H2 the only enzyme able to remove single ribonucleotide-monophosphates (rNMPs) embedded in DNA. Ribonucleotide triphosphates (rNTPs) are incorporated into genomic DNA with relatively high frequency during normal replication making DNA more susceptible to strand breakage and mutations. Here we demonstrate that human cells depleted of RNase H2 show impaired cell cycle progression associated with chronic activation of post-replication repair (PRR) and genome instability. We identify a similar phenotype in cells derived from AGS patients, which indeed accumulate rNMPs in genomic DNA and exhibit markers of constitutive PRR and checkpoint activation. Our data indicate that in human cells RNase H2 plays a crucial role in correcting rNMPs misincorporation, preventing DNA damage. Such protective function is compromised in AGS patients and may be linked to unscheduled immune responses. These findings may be relevant to shed further light on the mechanisms involved in AGS pathogenesis.


Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair.

  • Medini Manohar Ghodgaonkar‎ et al.
  • Molecular cell‎
  • 2013‎

To improve replication fidelity, mismatch repair (MMR) must detect non-Watson-Crick base pairs and direct their repair to the nascent DNA strand. Eukaryotic MMR in vitro requires pre-existing strand discontinuities for initiation; consequently, it has been postulated that MMR in vivo initiates at Okazaki fragment termini in the lagging strand and at nicks generated in the leading strand by the mismatch-activated MLH1/PMS2 endonuclease. We now show that a single ribonucleotide in the vicinity of a mismatch can act as an initiation site for MMR in human cell extracts and that MMR activation in this system is dependent on RNase H2. As loss of RNase H2 in S.cerevisiae results in a mild MMR defect that is reflected in increased mutagenesis, MMR in vivo might also initiate at RNase H2-generated nicks. We therefore propose that ribonucleotides misincoporated during DNA replication serve as physiological markers of the nascent DNA strand.


VID22 counteracts G-quadruplex-induced genome instability.

  • Elena Galati‎ et al.
  • Nucleic acids research‎
  • 2021‎

Genome instability is a condition characterized by the accumulation of genetic alterations and is a hallmark of cancer cells. To uncover new genes and cellular pathways affecting endogenous DNA damage and genome integrity, we exploited a Synthetic Genetic Array (SGA)-based screen in yeast. Among the positive genes, we identified VID22, reported to be involved in DNA double-strand break repair. vid22Δ cells exhibit increased levels of endogenous DNA damage, chronic DNA damage response activation and accumulate DNA aberrations in sequences displaying high probabilities of forming G-quadruplexes (G4-DNA). If not resolved, these DNA secondary structures can block the progression of both DNA and RNA polymerases and correlate with chromosome fragile sites. Vid22 binds to and protects DNA at G4-containing regions both in vitro and in vivo. Loss of VID22 causes an increase in gross chromosomal rearrangement (GCR) events dependent on G-quadruplex forming sequences. Moreover, the absence of Vid22 causes defects in the correct maintenance of G4-DNA rich elements, such as telomeres and mtDNA, and hypersensitivity to the G4-stabilizing ligand TMPyP4. We thus propose that Vid22 is directly involved in genome integrity maintenance as a novel regulator of G4 metabolism.


The Incorporation of Ribonucleotides Induces Structural and Conformational Changes in DNA.

  • Alice Meroni‎ et al.
  • Biophysical journal‎
  • 2017‎

Ribonucleotide incorporation is the most common error occurring during DNA replication. Cells have hence developed mechanisms to remove ribonucleotides from the genome and restore its integrity. Indeed, the persistence of ribonucleotides into DNA leads to severe consequences, such as genome instability and replication stress. Thus, it becomes important to understand the effects of ribonucleotides incorporation, starting from their impact on DNA structure and conformation. Here we present a systematic study of the effects of ribonucleotide incorporation into DNA molecules. We have developed, to our knowledge, a new method to efficiently synthesize long DNA molecules (hundreds of basepairs) containing ribonucleotides, which is based on a modified protocol for the polymerase chain reaction. By means of atomic force microscopy, we could therefore investigate the changes, upon ribonucleotide incorporation, of the structural and conformational properties of numerous DNA populations at the single-molecule level. Specifically, we characterized the scaling of the contour length with the number of basepairs and the scaling of the end-to-end distance with the curvilinear distance, the bending angle distribution, and the persistence length. Our results revealed that ribonucleotides affect DNA structure and conformation on scales that go well beyond the typical dimension of the single ribonucleotide. In particular, the presence of ribonucleotides induces a systematic shortening of the molecules, together with a decrease of the persistence length. Such structural changes are also likely to occur in vivo, where they could directly affect the downstream DNA transactions, as well as interfere with protein binding and recognition.


RNase H activities counteract a toxic effect of Polymerase η in cells replicating with depleted dNTP pools.

  • Alice Meroni‎ et al.
  • Nucleic acids research‎
  • 2019‎

RNA:DNA hybrids are transient physiological intermediates that arise during several cellular processes such as DNA replication. In pathological situations, they may stably accumulate and pose a threat to genome integrity. Cellular RNase H activities process these structures to restore the correct DNA:DNA sequence. Yeast cells lacking RNase H are negatively affected by depletion of deoxyribonucleotide pools necessary for DNA replication. Here we show that the translesion synthesis DNA polymerase η (Pol η) plays a role in DNA replication under low deoxyribonucleotides condition triggered by hydroxyurea. In particular, the catalytic reaction performed by Pol η is detrimental for RNase H deficient cells, causing DNA damage checkpoint activation and G2/M arrest. Moreover, a Pol η mutant allele with enhanced ribonucleotide incorporation further exacerbates the sensitivity to hydroxyurea of cells lacking RNase H activities. Our data are compatible with a model in which Pol η activity facilitates the formation or stabilization of RNA:DNA hybrids at stalled replication forks. However, in a scenario where RNase H activity fails to restore DNA, these hybrids become highly toxic for cells.


The ribonuclease DIS3 promotes let-7 miRNA maturation by degrading the pluripotency factor LIN28B mRNA.

  • Simona Segalla‎ et al.
  • Nucleic acids research‎
  • 2015‎

Multiple myeloma, the second most frequent hematologic tumor after lymphomas, is an incurable cancer. Recent sequencing efforts have identified the ribonuclease DIS3 as one of the most frequently mutated genes in this disease. DIS3 represents the catalytic subunit of the exosome, a macromolecular complex central to the processing, maturation and surveillance of various RNAs. miRNAs are an evolutionarily conserved class of small noncoding RNAs, regulating gene expression at post-transcriptional level. Ribonucleases, including Drosha, Dicer and XRN2, are involved in the processing and stability of miRNAs. However, the role of DIS3 on the regulation of miRNAs remains largely unknown. Here we found that DIS3 regulates the levels of the tumor suppressor let-7 miRNAs without affecting other miRNA families. DIS3 facilitates the maturation of let-7 miRNAs by reducing in the cytoplasm the RNA stability of the pluripotency factor LIN28B, a inhibitor of let-7 processing. DIS3 inactivation, through the increase of LIN28B and the reduction of mature let-7, enhances the translation of let-7 targets such as MYC and RAS leading to enhanced tumorigenesis. Our study establishes that the ribonuclease DIS3, targeting LIN28B, sustains the maturation of let-7 miRNAs and suggests the increased translation of critical oncogenes as one of the biological outcomes of DIS3 inactivation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: