Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

KRAS and YAP1 converge to regulate EMT and tumor survival.

  • Diane D Shao‎ et al.
  • Cell‎
  • 2014‎

Cancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival upon KRAS suppression. In particular, the transcriptional coactivator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling.


MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins.

  • David Colecchia‎ et al.
  • Autophagy‎
  • 2012‎

Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved catabolic process necessary for normal recycling of cellular constituents and for appropriate response to cellular stress. Although several genes belonging to the core molecular machinery involved in autophagosome formation have been discovered, relatively little is known about the nature of signaling networks controlling autophagy upon intracellular or extracellular stimuli. We discovered ATG8-like proteins (MAP1LC3B, GABARAP and GABARAPL1) as novel interactors of MAPK15/ERK8, a MAP kinase involved in cell proliferation and transformation. Based on the role of these proteins in the autophagic process, we demonstrated that MAPK15 is indeed localized to autophagic compartments and increased, in a kinase-dependent fashion, ATG8-like proteins lipidation, autophagosome formation and SQSTM1 degradation, while decreasing LC3B inhibitory phosphorylation. Interestingly, we also identified a conserved LC3-interacting region (LIR) in MAPK15 responsible for its interaction with ATG8-like proteins, for its localization to autophagic structures and, consequently, for stimulation of the formation of these compartments. Furthermore, we reveal that MAPK15 activity was induced in response to serum and amino-acid starvation and that this stimulus, in turn, required endogenous MAPK15 expression to induce the autophagic process. Altogether, these results suggested a new function for MAPK15 as a regulator of autophagy, acting through interaction with ATG8 family proteins. Also, based on the key role of this process in several human diseases, these results supported the use of this MAP kinase as a potential novel therapeutic target.


A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.

  • Aravind Subramanian‎ et al.
  • Cell‎
  • 2017‎

We previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs, and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.


Predicting cell health phenotypes using image-based morphology profiling.

  • Gregory P Way‎ et al.
  • Molecular biology of the cell‎
  • 2021‎

Genetic and chemical perturbations impact diverse cellular phenotypes, including multiple indicators of cell health. These readouts reveal toxicity and antitumorigenic effects relevant to drug discovery and personalized medicine. We developed two customized microscopy assays, one using four targeted reagents and the other three targeted reagents, to collectively measure 70 specific cell health phenotypes including proliferation, apoptosis, reactive oxygen species, DNA damage, and cell cycle stage. We then tested an approach to predict multiple cell health phenotypes using Cell Painting, an inexpensive and scalable image-based morphology assay. In matched CRISPR perturbations of three cancer cell lines, we collected both Cell Painting and cell health data. We found that simple machine learning algorithms can predict many cell health readouts directly from Cell Painting images, at less than half the cost. We hypothesized that these models can be applied to accurately predict cell health assay outcomes for any future or existing Cell Painting dataset. For Cell Painting images from a set of 1500+ compound perturbations across multiple doses, we validated predictions by orthogonal assay readouts. We provide a web app to browse predictions: http://broad.io/cell-health-app. Our approach can be used to add cell health annotations to Cell Painting datasets.


Genotype-Fitness Maps of EGFR-Mutant Lung Adenocarcinoma Chart the Evolutionary Landscape of Resistance for Combination Therapy Optimization.

  • Patrick O Bolan‎ et al.
  • Cell systems‎
  • 2020‎

Cancer evolution poses a central obstacle to cure, as resistant clones expand under therapeutic selection pressures. Genome sequencing of relapsed disease can nominate genomic alterations conferring resistance but sample collection lags behind, limiting therapeutic innovation. Genome-wide screens offer a complementary approach to chart the compendium of escape genotypes, anticipating clinical resistance. We report genome-wide open reading frame (ORF) resistance screens for first- and third-generation epidermal growth factor receptor (EGFR) inhibitors and a MEK inhibitor. Using serial sampling, dose gradients, and mathematical modeling, we generate genotype-fitness maps across therapeutic contexts and identify alterations that escape therapy. Our data expose varying dose-fitness relationship across genotypes, ranging from complete dose invariance to paradoxical dose dependency where fitness increases in higher doses. We predict fitness with combination therapy and compare these estimates to genome-wide fitness maps of drug combinations, identifying genotypes where combination therapy results in unexpected inferior effectiveness. These data are applied to nominate combination optimization strategies to forestall resistant disease.


An In Vivo CRISPR Screening Platform for Prioritizing Therapeutic Targets in AML.

  • Shan Lin‎ et al.
  • Cancer discovery‎
  • 2022‎

CRISPR-Cas9-based genetic screens have successfully identified cell type-dependent liabilities in cancer, including acute myeloid leukemia (AML), a devastating hematologic malignancy with poor overall survival. Because most of these screens have been performed in vitro using established cell lines, evaluating the physiologic relevance of these targets is critical. We have established a CRISPR screening approach using orthotopic xenograft models to validate and prioritize AML-enriched dependencies in vivo, including in CRISPR-competent AML patient-derived xenograft (PDX) models tractable for genome editing. Our integrated pipeline has revealed several targets with translational value, including SLC5A3 as a metabolic vulnerability for AML addicted to exogenous myo-inositol and MARCH5 as a critical guardian to prevent apoptosis in AML. MARCH5 repression enhanced the efficacy of BCL2 inhibitors such as venetoclax, further highlighting the clinical potential of targeting MARCH5 in AML. Our study provides a valuable strategy for discovery and prioritization of new candidate AML therapeutic targets. SIGNIFICANCE: There is an unmet need to improve the clinical outcome of AML. We developed an integrated in vivo screening approach to prioritize and validate AML dependencies with high translational potential. We identified SLC5A3 as a metabolic vulnerability and MARCH5 as a critical apoptosis regulator in AML, both of which represent novel therapeutic opportunities.This article is highlighted in the In This Issue feature, p. 275.


Natural variation in gene expression and viral susceptibility revealed by neural progenitor cell villages.

  • Michael F Wells‎ et al.
  • Cell stem cell‎
  • 2023‎

Human genome variation contributes to diversity in neurodevelopmental outcomes and vulnerabilities; recognizing the underlying molecular and cellular mechanisms will require scalable approaches. Here, we describe a "cell village" experimental platform we used to analyze genetic, molecular, and phenotypic heterogeneity across neural progenitor cells from 44 human donors cultured in a shared in vitro environment using algorithms (Dropulation and Census-seq) to assign cells and phenotypes to individual donors. Through rapid induction of human stem cell-derived neural progenitor cells, measurements of natural genetic variation, and CRISPR-Cas9 genetic perturbations, we identified a common variant that regulates antiviral IFITM3 expression and explains most inter-individual variation in susceptibility to the Zika virus. We also detected expression QTLs corresponding to GWAS loci for brain traits and discovered novel disease-relevant regulators of progenitor proliferation and differentiation such as CACHD1. This approach provides scalable ways to elucidate the effects of genes and genetic variation on cellular phenotypes.


Phosphate dysregulation via the XPR1-KIDINS220 protein complex is a therapeutic vulnerability in ovarian cancer.

  • Daniel P Bondeson‎ et al.
  • Nature cancer‎
  • 2022‎

Despite advances in precision medicine, the clinical prospects for patients with ovarian and uterine cancers have not substantially improved. Here, we analyzed genome-scale CRISPR-Cas9 loss-of-function screens across 851 human cancer cell lines and found that frequent overexpression of SLC34A2-encoding a phosphate importer-is correlated with sensitivity to loss of the phosphate exporter XPR1, both in vitro and in vivo. In patient-derived tumor samples, we observed frequent PAX8-dependent overexpression of SLC34A2, XPR1 copy number amplifications and XPR1 messenger RNA overexpression. Mechanistically, in SLC34A2-high cancer cell lines, genetic or pharmacologic inhibition of XPR1-dependent phosphate efflux leads to the toxic accumulation of intracellular phosphate. Finally, we show that XPR1 requires the novel partner protein KIDINS220 for proper cellular localization and activity, and that disruption of this protein complex results in acidic "vacuolar" structures preceding cell death. These data point to the XPR1-KIDINS220 complex and phosphate dysregulation as a therapeutic vulnerability in ovarian cancer.


Synthetic Lethal Interaction of SHOC2 Depletion with MEK Inhibition in RAS-Driven Cancers.

  • Rita Sulahian‎ et al.
  • Cell reports‎
  • 2019‎

The mitogen-activated protein kinase (MAPK) pathway is a critical effector of oncogenic RAS signaling, and MAPK pathway inhibition may be an effective combination treatment strategy. We performed genome-scale loss-of-function CRISPR-Cas9 screens in the presence of a MEK1/2 inhibitor (MEKi) in KRAS-mutant pancreatic and lung cancer cell lines and identified genes that cooperate with MEK inhibition. While we observed heterogeneity in genetic modifiers of MEKi sensitivity across cell lines, several recurrent classes of synthetic lethal vulnerabilities emerged at the pathway level. Multiple members of receptor tyrosine kinase (RTK)-RAS-MAPK pathways scored as sensitizers to MEKi. In particular, we demonstrate that knockout, suppression, or degradation of SHOC2, a positive regulator of MAPK signaling, specifically cooperated with MEK inhibition to impair proliferation in RAS-driven cancer cells. The depletion of SHOC2 disrupted survival pathways triggered by feedback RTK signaling in response to MEK inhibition. Thus, these findings nominate SHOC2 as a potential target for combination therapy.


A genome-wide gain-of-function screen identifies CDKN2C as a HBV host factor.

  • Carla Eller‎ et al.
  • Nature communications‎
  • 2020‎

Chronic HBV infection is a major cause of liver disease and cancer worldwide. Approaches for cure are lacking, and the knowledge of virus-host interactions is still limited. Here, we perform a genome-wide gain-of-function screen using a poorly permissive hepatoma cell line to uncover host factors enhancing HBV infection. Validation studies in primary human hepatocytes identified CDKN2C as an important host factor for HBV replication. CDKN2C is overexpressed in highly permissive cells and HBV-infected patients. Mechanistic studies show a role for CDKN2C in inducing cell cycle G1 arrest through inhibition of CDK4/6 associated with the upregulation of HBV transcription enhancers. A correlation between CDKN2C expression and disease progression in HBV-infected patients suggests a role in HBV-induced liver disease. Taken together, we identify a previously undiscovered clinically relevant HBV host factor, allowing the development of improved infectious model systems for drug discovery and the study of the HBV life cycle.


A Ubiquitination Cascade Regulating the Integrated Stress Response and Survival in Carcinomas.

  • Lisa D Cervia‎ et al.
  • Cancer discovery‎
  • 2023‎

Systematic identification of signaling pathways required for the fitness of cancer cells will facilitate the development of new cancer therapies. We used gene essentiality measurements in 1,086 cancer cell lines to identify selective coessentiality modules and found that a ubiquitin ligase complex composed of UBA6, BIRC6, KCMF1, and UBR4 is required for the survival of a subset of epithelial tumors that exhibit a high degree of aneuploidy. Suppressing BIRC6 in cell lines that are dependent on this complex led to a substantial reduction in cell fitness in vitro and potent tumor regression in vivo. Mechanistically, BIRC6 suppression resulted in selective activation of the integrated stress response (ISR) by stabilization of the heme-regulated inhibitor, a direct ubiquitination target of the UBA6/BIRC6/KCMF1/UBR4 complex. These observations uncover a novel ubiquitination cascade that regulates ISR and highlight the potential of ISR activation as a new therapeutic strategy.


Mutational processes shape the landscape of TP53 mutations in human cancer.

  • Andrew O Giacomelli‎ et al.
  • Nature genetics‎
  • 2018‎

Unlike most tumor suppressor genes, the most common genetic alterations in tumor protein p53 (TP53) are missense mutations1,2. Mutant p53 protein is often abundantly expressed in cancers and specific allelic variants exhibit dominant-negative or gain-of-function activities in experimental models3-8. To gain a systematic view of p53 function, we interrogated loss-of-function screens conducted in hundreds of human cancer cell lines and performed TP53 saturation mutagenesis screens in an isogenic pair of TP53 wild-type and null cell lines. We found that loss or dominant-negative inhibition of wild-type p53 function reliably enhanced cellular fitness. By integrating these data with the Catalog of Somatic Mutations in Cancer (COSMIC) mutational signatures database9,10, we developed a statistical model that describes the TP53 mutational spectrum as a function of the baseline probability of acquiring each mutation and the fitness advantage conferred by attenuation of p53 activity. Collectively, these observations show that widely-acting and tissue-specific mutational processes combine with phenotypic selection to dictate the frequencies of recurrent TP53 mutations.


A melanocyte lineage program confers resistance to MAP kinase pathway inhibition.

  • Cory M Johannessen‎ et al.
  • Nature‎
  • 2013‎

Malignant melanomas harbouring point mutations (Val600Glu) in the serine/threonine-protein kinase BRAF (BRAF(V600E)) depend on RAF-MEK-ERK signalling for tumour cell growth. RAF and MEK inhibitors show remarkable clinical efficacy in BRAF(V600E) melanoma; however, resistance to these agents remains a formidable challenge. Global characterization of resistance mechanisms may inform the development of more effective therapeutic combinations. Here we carried out systematic gain-of-function resistance studies by expressing more than 15,500 genes individually in a BRAF(V600E) melanoma cell line treated with RAF, MEK, ERK or combined RAF-MEK inhibitors. These studies revealed a cyclic-AMP-dependent melanocytic signalling network not previously associated with drug resistance, including G-protein-coupled receptors, adenyl cyclase, protein kinase A and cAMP response element binding protein (CREB). Preliminary analysis of biopsies from BRAF(V600E) melanoma patients revealed that phosphorylated (active) CREB was suppressed by RAF-MEK inhibition but restored in relapsing tumours. Expression of transcription factors activated downstream of MAP kinase and cAMP pathways also conferred resistance, including c-FOS, NR4A1, NR4A2 and MITF. Combined treatment with MAPK-pathway and histone-deacetylase inhibitors suppressed MITF expression and cAMP-mediated resistance. Collectively, these data suggest that oncogenic dysregulation of a melanocyte lineage dependency can cause resistance to RAF-MEK-ERK inhibition, which may be overcome by combining signalling- and chromatin-directed therapeutics.


High-throughput Phenotyping of Lung Cancer Somatic Mutations.

  • Alice H Berger‎ et al.
  • Cancer cell‎
  • 2016‎

Recent genome sequencing efforts have identified millions of somatic mutations in cancer. However, the functional impact of most variants is poorly understood. Here we characterize 194 somatic mutations identified in primary lung adenocarcinomas. We present an expression-based variant-impact phenotyping (eVIP) method that uses gene expression changes to distinguish impactful from neutral somatic mutations. eVIP identified 69% of mutations analyzed as impactful and 31% as functionally neutral. A subset of the impactful mutations induces xenograft tumor formation in mice and/or confers resistance to cellular EGFR inhibition. Among these impactful variants are rare somatic, clinically actionable variants including EGFR S645C, ARAF S214C and S214F, ERBB2 S418T, and multiple BRAF variants, demonstrating that rare mutations can be functionally important in cancer.


TRIM8 modulates the EWS/FLI oncoprotein to promote survival in Ewing sarcoma.

  • Bo Kyung A Seong‎ et al.
  • Cancer cell‎
  • 2021‎

Fusion-transcription factors (fusion-TFs) represent a class of driver oncoproteins that are difficult to therapeutically target. Recently, protein degradation has emerged as a strategy to target these challenging oncoproteins. The mechanisms that regulate fusion-TF stability, however, are generally unknown. Using CRISPR-Cas9 screening, we discovered tripartite motif-containing 8 (TRIM8) as an E3 ubiquitin ligase that ubiquitinates and degrades EWS/FLI, a driver fusion-TF in Ewing sarcoma. Moreover, we identified TRIM8 as a selective dependency in Ewing sarcoma compared with >700 other cancer cell lines. Mechanistically, TRIM8 knockout led to an increase in EWS/FLI protein levels that was not tolerated. EWS/FLI acts as a neomorphic substrate for TRIM8, defining the selective nature of the dependency. Our results demonstrate that fusion-TF protein stability is tightly regulated and highlight fusion oncoprotein-specific regulators as selective therapeutic targets. This study provides a tractable strategy to therapeutically exploit oncogene overdose in Ewing sarcoma and potentially other fusion-TF-driven cancers.


Genetic and Proteomic Interrogation of Lower Confidence Candidate Genes Reveals Signaling Networks in β-Catenin-Active Cancers.

  • Joseph Rosenbluh‎ et al.
  • Cell systems‎
  • 2016‎

Genome-scale expression studies and comprehensive loss-of-function genetic screens have focused almost exclusively on the highest confidence candidate genes. Here, we describe a strategy for characterizing the lower confidence candidates identified by such approaches. We interrogated 177 genes that we classified as essential for the proliferation of cancer cells exhibiting constitutive β-catenin activity and integrated data for each of the candidates, derived from orthogonal short hairpin RNA (shRNA) knockdown and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-mediated gene editing knockout screens, to yield 69 validated genes. We then characterized the relationships between sets of these genes using complementary assays: medium-throughput stable isotope labeling by amino acids in cell culture (SILAC)-based mass spectrometry, yielding 3,639 protein-protein interactions, and a CRISPR-mediated pairwise double knockout screen, yielding 375 combinations exhibiting greater- or lesser-than-additive phenotypic effects indicating genetic interactions. These studies identify previously unreported regulators of β-catenin, define functional networks required for the survival of β-catenin-active cancers, and provide an experimental strategy that may be applied to define other signaling networks.


A functional landscape of resistance to ALK inhibition in lung cancer.

  • Frederick H Wilson‎ et al.
  • Cancer cell‎
  • 2015‎

We conducted a large-scale functional genetic study to characterize mechanisms of resistance to ALK inhibition in ALK-dependent lung cancer cells. We identify members of known resistance pathways and additional putative resistance drivers. Among the latter were members of the P2Y purinergic receptor family of G-protein-coupled receptors (P2Y1, P2Y2, and P2Y6). P2Y receptors mediated resistance in part through a protein-kinase-C (PKC)-dependent mechanism. Moreover, PKC activation alone was sufficient to confer resistance to ALK inhibitors, whereas combined ALK and PKC inhibition restored sensitivity. We observed enrichment of gene signatures associated with several resistance drivers (including P2Y receptors) in crizotinib-resistant ALK-rearranged lung tumors compared to treatment-naive controls, supporting a role for these identified mechanisms in clinical ALK inhibitor resistance.


Neuronal differentiation and cell-cycle programs mediate response to BET-bromodomain inhibition in MYC-driven medulloblastoma.

  • Pratiti Bandopadhayay‎ et al.
  • Nature communications‎
  • 2019‎

BET-bromodomain inhibition (BETi) has shown pre-clinical promise for MYC-amplified medulloblastoma. However, the mechanisms for its action, and ultimately for resistance, have not been fully defined. Here, using a combination of expression profiling, genome-scale CRISPR/Cas9-mediated loss of function and ORF/cDNA driven rescue screens, and cell-based models of spontaneous resistance, we identify bHLH/homeobox transcription factors and cell-cycle regulators as key genes mediating BETi's response and resistance. Cells that acquire drug tolerance exhibit a more neuronally differentiated cell-state and expression of lineage-specific bHLH/homeobox transcription factors. However, they do not terminally differentiate, maintain expression of CCND2, and continue to cycle through S-phase. Moreover, CDK4/CDK6 inhibition delays acquisition of resistance. Therefore, our data provide insights about the mechanisms underlying BETi effects and the appearance of resistance and support the therapeutic use of combined cell-cycle inhibitors with BETi in MYC-amplified medulloblastoma.


Synergistic interactions with PI3K inhibition that induce apoptosis.

  • Yaara Zwang‎ et al.
  • eLife‎
  • 2017‎

Activating mutations involving the PI3K pathway occur frequently in human cancers. However, PI3K inhibitors primarily induce cell cycle arrest, leaving a significant reservoir of tumor cells that may acquire or exhibit resistance. We searched for genes that are required for the survival of PI3K mutant cancer cells in the presence of PI3K inhibition by conducting a genome scale shRNA-based apoptosis screen in a PIK3CA mutant human breast cancer cell. We identified 5 genes (PIM2, ZAK, TACC1, ZFR, ZNF565) whose suppression induced cell death upon PI3K inhibition. We showed that small molecule inhibitors of the PIM2 and ZAK kinases synergize with PI3K inhibition. In addition, using a microscale implementable device to deliver either siRNAs or small molecule inhibitors in vivo, we showed that suppressing these 5 genes with PI3K inhibition induced tumor regression. These observations identify targets whose inhibition synergizes with PI3K inhibitors and nominate potential combination therapies involving PI3K inhibition.


Synthetic Lethal Interaction between the ESCRT Paralog Enzymes VPS4A and VPS4B in Cancers Harboring Loss of Chromosome 18q or 16q.

  • Jasper E Neggers‎ et al.
  • Cell reports‎
  • 2020‎

Few therapies target the loss of tumor suppressor genes in cancer. We examine CRISPR-SpCas9 and RNA-interference loss-of-function screens to identify new therapeutic targets associated with genomic loss of tumor suppressor genes. The endosomal sorting complexes required for transport (ESCRT) ATPases VPS4A and VPS4B score as strong synthetic lethal dependencies. VPS4A is essential in cancers harboring loss of VPS4B adjacent to SMAD4 on chromosome 18q and VPS4B is required in tumors with co-deletion of VPS4A and CDH1 (E-cadherin) on chromosome 16q. We demonstrate that more than 30% of cancers selectively require VPS4A or VPS4B. VPS4A suppression in VPS4B-deficient cells selectively leads to ESCRT-III filament accumulation, cytokinesis defects, nuclear deformation, G2/M arrest, apoptosis, and potent tumor regression. CRISPR-SpCas9 screening and integrative genomic analysis reveal other ESCRT members, regulators of abscission, and interferon signaling as modifiers of VPS4A dependency. We describe a compendium of synthetic lethal vulnerabilities and nominate VPS4A and VPS4B as high-priority therapeutic targets for cancers with 18q or 16q loss.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: