2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

The small-conductance calcium-activated potassium channel is a key modulator of firing and long-term depression in the dorsal striatum.

  • F Woodward Hopf‎ et al.
  • The European journal of neuroscience‎
  • 2010‎

The striatum is considered to be critical for the control of goal-directed action, with the lateral dorsal striatum (latDS) being implicated in modulation of habits and the nucleus accumbens thought to represent a limbic-motor interface. Although medium spiny neurons from different striatal subregions exhibit many similar properties, differential firing and synaptic plasticity could contribute to the varied behavioral roles across subregions. Here, we examined the contribution of small-conductance calcium-activated potassium channels (SKs) to action potential generation and synaptic plasticity in adult rat latDS and nucleus accumbens shell (NAS) projection neurons in vitro. The SK-selective antagonist apamin exerted a prominent effect on latDS firing, significantly decreasing the interspike interval. Furthermore, prolonged latDS depolarization increased the interspike interval and reduced firing, and this enhancement was reversed by apamin. In contrast, NAS neurons exhibited greater basal firing rates and less regulation of firing by SK inhibition and prolonged depolarization. LatDS neurons also had greater SK currents than NAS neurons under voltage-clamp. Importantly, SK inhibition with apamin facilitated long-term depression (LTD) induction in the latDS but not the NAS, without alterations in glutamate release. In addition, SK activation in the latDS prevented LTD induction. Greater SK function in the latDS than in the NAS was not secondary to differences in sodium or inwardly rectifying potassium channel function, and apamin enhancement of firing did not reflect indirect action through cholinergic interneurons. Thus, these data demonstrate that SKs are potent modulators of action potential generation and LTD in the dorsal striatum, and could represent a fundamental cellular mechanism through which habits are regulated.


The dopamine D2 receptor: new surprises from an old friend.

  • Antonello Bonci‎ et al.
  • Neuron‎
  • 2005‎

Drugs acting at dopamine D2 receptors (D2R) are commonly used to alleviate symptoms produced by diseases such as Parkinson's disease, schizophrenia, and depression. A limitation to the use of these drugs is that they sometimes afflict patients with severe side effects. This review discusses recent evidence for several proteins that represent novel mediators of the downstream consequences of D2R activation, since selective targeting of particular D2R-mediated signaling pathways could lead to the development of improved treatments for these devastating diseases.


Heart rate variability measures indicating sex differences in autonomic regulation during anxiety-like behavior in rats.

  • Raizel M Frasier‎ et al.
  • Frontiers in psychiatry‎
  • 2023‎

Mental health conditions remain a substantial and costly challenge to society, especially in women since they have nearly twice the prevalence of anxiety disorders. However, critical mechanisms underlying sex differences remain incompletely understood. Measures of cardiac function, including heart rate (HR) and HR variability (HRV), reflect balance between sympathetic (SNS) and parasympathetic (PNS) systems and are potential biomarkers for pathological states.


The α5 subunit regulates the expression and function of α4*-containing neuronal nicotinic acetylcholine receptors in the ventral-tegmental area.

  • Susmita Chatterjee‎ et al.
  • PloS one‎
  • 2013‎

Human genetic association studies have shown gene variants in the α5 subunit of the neuronal nicotinic receptor (nAChR) influence both ethanol and nicotine dependence. The α5 subunit is an accessory subunit that facilitates α4* nAChRs assembly in vitro. However, it is unknown whether this occurs in the brain, as there are few research tools to adequately address this question. As the α4*-containing nAChRs are highly expressed in the ventral tegmental area (VTA) we assessed the molecular, functional and pharmacological roles of α5 in α4*-containing nAChRs in the VTA. We utilized transgenic mice α5+/+(α4YFP) and α5-/-(α4YFP) that allow the direct visualization and measurement of α4-YFP expression and the effect of the presence (α5+/+) and absence of α5 (-/-) subunit, as the antibodies for detecting the α4* subunits of the nAChR are not specific. We performed voltage clamp electrophysiological experiments to study baseline nicotinic currents in VTA dopaminergic neurons. We show that in the presence of the α5 subunit, the overall expression of α4 subunit is increased significantly by 60% in the VTA. Furthermore, the α5 subunit strengthens baseline nAChR currents, suggesting the increased expression of α4* nAChRs to be likely on the cell surface. While the presence of the α5 subunit blunts the desensitization of nAChRs following nicotine exposure, it does not alter the amount of ethanol potentiation of VTA dopaminergic neurons. Our data demonstrates a major regulatory role for the α5 subunit in both the maintenance of α4*-containing nAChRs expression and in modulating nicotinic currents in VTA dopaminergic neurons. Additionally, the α5α4* nAChR in VTA dopaminergic neurons regulates the effect of nicotine but not ethanol on currents. Together, the data suggest that the α5 subunit is critical for controlling the expression and functional role of a population of α4*-containing nAChRs in the VTA.


MCH and apomorphine in combination enhance action potential firing of nucleus accumbens shell neurons in vitro.

  • F Woodward Hopf‎ et al.
  • PeerJ‎
  • 2013‎

The MCH and dopamine receptor systems have been shown to modulate a number of behaviors related to reward processing, addiction, and neuropsychiatric conditions such as schizophrenia and depression. In addition, MCH and dopamine receptors can interact in a positive manner, for example in the expression of cocaine self-administration. A recent report (Chung et al., 2011a) showed that the DA1/DA2 dopamine receptor activator apomorphine suppresses pre-pulse inhibition, a preclinical model for some aspects of schizophrenia. Importantly, MCH can enhance the effects of lower doses of apomorphine, suggesting that co-modulation of dopamine and MCH receptors might alleviate some symptoms of schizophrenia with a lower dose of dopamine receptor modulator and thus fewer potential side effects. Here, we investigated whether MCH and apomorphine could enhance action potential firing in vitro in the nucleus accumbens shell (NAshell), a region which has previously been shown to mediate some behavioral effects of MCH. Using whole-cell patch-clamp electrophysiology, we found that MCH, which has no effect on firing on its own, was able to increase NAshell firing when combined with a subthreshold dose of apomorphine. Further, this MCH/apomorphine increase in firing was prevented by an antagonist of either a DA1 or a DA2 receptor, suggesting that apomorphine acts through both receptor types to enhance NAshell firing. The MCH/apomorphine-mediated firing increase was also prevented by an MCH receptor antagonist or a PKA inhibitor. Taken together, our results suggest that MCH can interact with lower doses of apomorphine to enhance NAshell firing, and thus that MCH and apomorphine might interact in vivo within the NAshell to suppress pre-pulse inhibition.


In vivo cell type-specific CRISPR knockdown of dopamine beta hydroxylase reduces locus coeruleus evoked wakefulness.

  • Hiroshi Yamaguchi‎ et al.
  • Nature communications‎
  • 2018‎

Locus coeruleus (LC) neurons in the brainstem have long been associated with attention and arousal. Optogenetic stimulation of LC-NE neurons induces immediate sleep-to-wake transitions. However, LC neurons also secrete other neurotransmitters in addition to NE. To interrogate the role of NE derived from the LC in regulating wakefulness, we applied in vivo cell type-specific CRISPR/Cas9 technology to disrupt the dopamine beta hydroxylase (dbh) gene selectively in adult LC-NE neurons. Unilateral dbh gene disruption abolished immediate arousal following optogenetic stimulation of LC. Bilateral LC-specific dbh disruption significantly reduced NE concentration in LC projection areas and reduced wake length even in the presence of salient stimuli. These results suggest that NE may be crucial for the awakening effect of LC stimulation and serve as proof-of-principle that CRISPR gene editing in adult neurons can be used to interrogate gene function within genetically-defined neuronal circuitry associated with complex behaviors.


Nicotine regulates activity of lateral habenula neurons via presynaptic and postsynaptic mechanisms.

  • Wanhong Zuo‎ et al.
  • Scientific reports‎
  • 2016‎

There is much interest in brain regions that drive nicotine intake in smokers. Interestingly, both the rewarding and aversive effects of nicotine are probably critical for sustaining nicotine addiction. The medial and lateral habenular (LHb) nuclei play important roles in processing aversion, and recent work has focused on the critical involvement of the LHb in encoding and responding to aversive stimuli. Several neurotransmitter systems are implicated in nicotine's actions, but very little is known about how nicotinic acetylcholine receptors (nAChRs) regulate LHb activity. Here we report in brain slices that activation of nAChRs depolarizes LHb cells and robustly increases firing, and also potentiates glutamate release in LHb. These effects were blocked by selective antagonists of α6-containing (α6*) nAChRs, and were absent in α6*-nAChR knockout mice. In addition, nicotine activates GABAergic inputs to LHb via α4β2-nAChRs, at lower concentrations but with more rapid desensitization relative to α6*-nAChRs. These results demonstrate the existence of diverse functional nAChR subtypes at presynaptic and postsynaptic sites in LHb, through which nicotine could facilitate or inhibit LHb neuronal activity and thus contribute to nicotine aversion or reward.


A Corticotropin Releasing Factor Network in the Extended Amygdala for Anxiety.

  • Matthew B Pomrenze‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2019‎

The central amygdala (CeA) is important for fear responses to discrete cues. Recent findings indicate that the CeA also contributes to states of sustained apprehension that characterize anxiety, although little is known about the neural circuitry involved. The stress neuropeptide corticotropin releasing factor (CRF) is anxiogenic and is produced by subpopulations of neurons in the lateral CeA and the dorsolateral bed nucleus of the stria terminalis (dlBST). Here we investigated the function of these CRF neurons in stress-induced anxiety using chemogenetics in male rats that express Cre recombinase from a Crh promoter. Anxiety-like behavior was mediated by CRF projections from the CeA to the dlBST and depended on activation of CRF1 receptors and CRF neurons within the dlBST. Our findings identify a CRFCeA→CRFdlBST circuit for generating anxiety-like behavior and provide mechanistic support for recent human and primate data suggesting that the CeA and BST act together to generate states of anxiety.SIGNIFICANCE STATEMENT Anxiety is a negative emotional state critical to survival, but persistent, exaggerated apprehension causes substantial morbidity. Identifying brain regions and neurotransmitter systems that drive anxiety can help in developing effective treatment. Much evidence in rodents indicates that neurons in the bed nucleus of the stria terminalis (BST) generate anxiety-like behaviors, but more recent findings also implicate neurons of the CeA. The neuronal subpopulations and circuitry that generate anxiety are currently subjects of intense investigation. Here we show that CeA neurons that release the stress neuropeptide corticotropin-releasing factor (CRF) drive anxiety-like behaviors in rats via a pathway to dorsal BST that activates local BST CRF neurons. Thus, our findings identify a CeA→BST CRF neuropeptide circuit that generates anxiety-like behavior.


Reduced nucleus accumbens SK channel activity enhances alcohol seeking during abstinence.

  • F Woodward Hopf‎ et al.
  • Neuron‎
  • 2010‎

The cellular mechanisms underlying pathological alcohol seeking remain poorly understood. Here, we show an enhancement of nucleus accumbens (NAcb) core action potential firing ex vivo after protracted abstinence from alcohol but not sucrose self-administration. Increased firing is associated with reduced small-conductance calcium-activated potassium channel (SK) currents and decreased SK3 but not SK2 subunit protein expression. Furthermore, SK activation ex vivo produces greater firing suppression in NAcb core neurons from alcohol- versus sucrose-abstinent rats. Accordingly, SK activation in the NAcb core significantly reduces alcohol but not sucrose seeking after abstinence. In contrast, NAcb shell and lateral dorsal striatal firing ex vivo are not altered after abstinence from alcohol, and SK activation in these regions has little effect on alcohol seeking. Thus, decreased NAcb core SK currents and increased excitability represents a critical mechanism that facilitates motivation to seek alcohol after abstinence.


A Transgenic Rat for Investigating the Anatomy and Function of Corticotrophin Releasing Factor Circuits.

  • Matthew B Pomrenze‎ et al.
  • Frontiers in neuroscience‎
  • 2015‎

Corticotrophin-releasing factor (CRF) is a 41 amino acid neuropeptide that coordinates adaptive responses to stress. CRF projections from neurons in the central nucleus of the amygdala (CeA) to the brainstem are of particular interest for their role in motivated behavior. To directly examine the anatomy and function of CRF neurons, we generated a BAC transgenic Crh-Cre rat in which bacterial Cre recombinase is expressed from the Crh promoter. Using Cre-dependent reporters, we found that Cre expressing neurons in these rats are immunoreactive for CRF and are clustered in the lateral CeA (CeL) and the oval nucleus of the BNST. We detected major projections from CeA CRF neurons to parabrachial nuclei and the locus coeruleus, dorsal and ventral BNST, and more minor projections to lateral portions of the substantia nigra, ventral tegmental area, and lateral hypothalamus. Optogenetic stimulation of CeA CRF neurons evoked GABA-ergic responses in 11% of non-CRF neurons in the medial CeA (CeM) and 44% of non-CRF neurons in the CeL. Chemogenetic stimulation of CeA CRF neurons induced Fos in a similar proportion of non-CRF CeM neurons but a smaller proportion of non-CRF CeL neurons. The CRF1 receptor antagonist R121919 reduced this Fos induction by two-thirds in these regions. These results indicate that CeL CRF neurons provide both local inhibitory GABA and excitatory CRF signals to other CeA neurons, and demonstrate the value of the Crh-Cre rat as a tool for studying circuit function and physiology of CRF neurons.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: