Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE.

  • Peng Qiu‎ et al.
  • Nature biotechnology‎
  • 2011‎

The ability to analyze multiple single-cell parameters is critical for understanding cellular heterogeneity. Despite recent advances in measurement technology, methods for analyzing high-dimensional single-cell data are often subjective, labor intensive and require prior knowledge of the biological system. To objectively uncover cellular heterogeneity from single-cell measurements, we present a versatile computational approach, spanning-tree progression analysis of density-normalized events (SPADE). We applied SPADE to flow cytometry data of mouse bone marrow and to mass cytometry data of human bone marrow. In both cases, SPADE organized cells in a hierarchy of related phenotypes that partially recapitulated well-described patterns of hematopoiesis. We demonstrate that SPADE is robust to measurement noise and to the choice of cellular markers. SPADE facilitates the analysis of cellular heterogeneity, the identification of cell types and comparison of functional markers in response to perturbations.


Switchable assembly and function of antibody complexes in vivo using a small molecule.

  • Alexander J Martinko‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

The antigen specificity and long serum half-life of monoclonal antibodies have made them a critical part of modern therapeutics. These properties have been coopted in a number of synthetic formats, such as antibody-drug conjugates, bispecific antibodies, or Fc-fusion proteins to generate novel biologic drug modalities. Historically, these new therapies have been generated by covalently linking multiple molecular moieties through chemical or genetic methods. This irreversible fusion of different components means that the function of the molecule is static, as determined by the structure. Here, we report the development of a technology for switchable assembly of functional antibody complexes using chemically induced dimerization domains. This approach enables control of the antibody's intended function in vivo by modulating the dose of a small molecule. We demonstrate this switchable assembly across three therapeutically relevant functionalities in vivo, including localization of a radionuclide-conjugated antibody to an antigen-positive tumor, extension of a cytokine's half-life, and activation of bispecific, T cell-engaging antibodies.


A Kinase Inhibitor Targeted to mTORC1 Drives Regression in Glioblastoma.

  • QiWen Fan‎ et al.
  • Cancer cell‎
  • 2017‎

Although signaling from phosphatidylinositol 3-kinase (PI3K) and AKT to mechanistic target of rapamycin (mTOR) is prominently dysregulated in high-grade glial brain tumors, blockade of PI3K or AKT minimally affects downstream mTOR activity in glioma. Allosteric mTOR inhibitors, such as rapamycin, incompletely block mTORC1 compared with mTOR kinase inhibitors (TORKi). Here, we compared RapaLink-1, a TORKi linked to rapamycin, with earlier-generation mTOR inhibitors. Compared with rapamycin and Rapalink-1, TORKi showed poor durability. RapaLink-1 associated with FKBP12, an abundant mTOR-interacting protein, enabling accumulation of RapaLink-1. RapaLink-1 showed better efficacy than rapamycin or TORKi, potently blocking cancer-derived, activating mutants of mTOR. Our study re-establishes mTOR as a central target in glioma and traces the failure of existing drugs to incomplete/nondurable inhibition of mTORC1.


Deep immune profiling reveals targetable mechanisms of immune evasion in immune checkpoint inhibitor-refractory glioblastoma.

  • Erin F Simonds‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2021‎

Glioblastoma (GBM) is refractory to immune checkpoint inhibitor (ICI) therapy. We sought to determine to what extent this immune evasion is due to intrinsic properties of the tumor cells versus the specialized immune context of the brain, and if it can be reversed.


Drugging MYCN through an allosteric transition in Aurora kinase A.

  • William Clay Gustafson‎ et al.
  • Cancer cell‎
  • 2014‎

MYC proteins are major drivers of cancer yet are considered undruggable because their DNA binding domains are composed of two extended alpha helices with no apparent surfaces for small-molecule binding. Proteolytic degradation of MYCN protein is regulated in part by a kinase-independent function of Aurora A. We describe a class of inhibitors that disrupts the native conformation of Aurora A and drives the degradation of MYCN protein across MYCN-driven cancers. Comparison of cocrystal structures with structure-activity relationships across multiple inhibitors and chemotypes, coupled with mechanistic studies and biochemical assays, delineates an Aurora A conformation-specific effect on proteolytic degradation of MYCN, rather than simple nanomolar-level inhibition of Aurora A kinase activity.


A Universal Live Cell Barcoding-Platform for Multiplexed Human Single Cell Analysis.

  • Felix J Hartmann‎ et al.
  • Scientific reports‎
  • 2018‎

Single-cell barcoding enables the combined processing and acquisition of multiple individual samples as one. This maximizes assay efficiency and eliminates technical variability in both sample preparation and analysis. Remaining challenges are the barcoding of live, unprocessed cells to increase downstream assay performance combined with the flexibility of the approach towards a broad range of cell types. To that end, we developed a novel antibody-based platform that allows the robust barcoding of live human cells for mass cytometry (CyTOF). By targeting both the MHC class I complex (beta-2-microglobulin) and a broadly expressed sodium-potassium ATPase-subunit (CD298) with platinum-conjugated antibodies, human immune cells, stem cells as well as tumor cells could be multiplexed in the same single-cell assay. In addition, we present a novel palladium-based covalent viability reagent compatible with this barcoding strategy. Altogether, this platform enables mass cytometry-based, live-cell barcoding across a multitude of human sample types and provides a scheme for multiplexed barcoding of human single-cell assays in general.


Single-cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates.

  • Nikesh Kotecha‎ et al.
  • Cancer cell‎
  • 2008‎

Progress in understanding the molecular pathogenesis of human myeloproliferative disorders (MPDs) has led to guidelines incorporating genetic assays with histopathology during diagnosis. Advances in flow cytometry have made it possible to simultaneously measure cell type and signaling abnormalities arising as a consequence of genetic pathologies. Using flow cytometry, we observed a specific evoked STAT5 signaling signature in a subset of samples from patients suspected of having juvenile myelomonocytic leukemia (JMML), an aggressive MPD with a challenging clinical presentation during active disease. This signature was a specific feature involving JAK-STAT signaling, suggesting a critical role of this pathway in the biological mechanism of this disorder and indicating potential targets for future therapies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: