Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

SOX10 directly modulates ERBB3 transcription via an intronic neural crest enhancer.

  • Megana K Prasad‎ et al.
  • BMC developmental biology‎
  • 2011‎

The ERBB3 gene is essential for the proper development of the neural crest (NC) and its derivative populations such as Schwann cells. As with all cell fate decisions, transcriptional regulatory control plays a significant role in the progressive restriction and specification of NC derived lineages during development. However, little is known about the sequences mediating transcriptional regulation of ERBB3 or the factors that bind them.


Genome-wide analysis of EGR2/SOX10 binding in myelinating peripheral nerve.

  • Rajini Srinivasan‎ et al.
  • Nucleic acids research‎
  • 2012‎

Myelin is essential for the rapidity of saltatory nerve conduction, and also provides trophic support for axons to prevent axonal degeneration. Two critical determinants of myelination are SOX10 and EGR2/KROX20. SOX10 is required for specification of Schwann cells from neural crest, and is required at every stage of Schwann cell development. Egr2/Krox20 expression is activated by axonal signals in myelinating Schwann cells, and is required for cell cycle arrest and myelin formation. To elucidate the integrated function of these two transcription factors during peripheral nerve myelination, we performed in vivo ChIP-Seq analysis of myelinating peripheral nerve. Integration of these binding data with loss-of-function array data identified a range of genes regulated by these factors. In addition, although SOX10 itself regulates Egr2/Krox20 expression, leading to coordinate activation of several major myelin genes by the two factors, there is a large subset of genes that are activated independent of EGR2. Finally, the results identify a set of SOX10-dependent genes that are expressed in early Schwann cell development, but become subsequently repressed by EGR2/KROX20.


Locus-wide identification of Egr2/Krox20 regulatory targets in myelin genes.

  • Sung-Wook Jang‎ et al.
  • Journal of neurochemistry‎
  • 2010‎

Myelination of peripheral nerves by Schwann cells depends upon a gene regulatory network controlled by early growth response Egr2/Krox20, which is specifically required for Schwann cells to initiate and maintain myelination. To elucidate the mechanism by which Egr2 regulates gene expression during myelination, we have performed chromatin immunoprecipitation analysis on myelinating rat sciatic nerve in vivo. The resulting samples were applied to a tiled microarray consisting of a broad spectrum of genes that are activated or repressed in Egr2-deficient mice. The results show extensive binding within myelin-associated genes, as well as some genes that become repressed in myelinating Schwann cells. Many of the Egr2 peaks coincide with regions of open chromatin, which is a marker of enhancer regions. In addition, further analysis showed that there is substantial colocalization of Egr2 binding with Sox10, a transcription factor required for Schwann cell specification and other stages of Schwann cell development. Finally, we have found that Egr2 binds to promoters of several lipid biosynthetic genes, which is consistent with their dramatic up-regulation during the formation of lipid-rich myelin. Overall, this analysis provides a locus-wide profile of Egr2 binding patterns in major myelin-associated genes using myelinating peripheral nerve.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: