Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Loss of GPRC5B impairs synapse formation of Purkinje cells with cerebellar nuclear neurons and disrupts cerebellar synaptic plasticity and motor learning.

  • Takamitsu Sano‎ et al.
  • Neuroscience research‎
  • 2018‎

GPRC5B is a membrane glycoprotein robustly expressed in mouse cerebellar Purkinje cells (PCs). Its function is unknown. In Gprc5b-/- mice that lack GPRC5B, PCs develop distal axonal swellings in deep cerebellar nuclei (DCN). Numerous misshapen mitochondria, which generated excessive amounts of reactive oxygen species (ROS), accumulated in these distal axonal swellings. In primary cell cultures of Gprc5b-/- PCs, pharmacological reduction of ROS prevented the appearance of such swellings. To examine the physiological role of GPRC5B in PCs, we analyzed cerebellar synaptic transmission and cerebellum-dependent motor learning in Gprc5b-/- mice. Patch-clamp recordings in cerebellum slices in vitro revealed that the induction of long-term depression (LTD) at parallel fiber-PC synapses was normal in adult Gprc5b-/- mice, whereas the induction of long-term potentiation (LTP) at mossy fiber-DCN neuron synapses was attenuated in juvenile Gprc5b-/- mice. In Gprc5b-/- mice, long-term motor learning was impaired in both the rotarod test and the horizontal optokinetic response eye movement (HOKR) test. These observations suggest that GPRC5B plays not only an important role in the development of distal axons of PCs and formation of synapses with DCN neurons, but also in the synaptic plasticity that underlies long-term motor learning.


Lysophosphatidylglucoside/GPR55 signaling promotes foam cell formation in human M2c macrophages.

  • Ryosuke Shimai‎ et al.
  • Scientific reports‎
  • 2023‎

Atherosclerosis is a major cause of cerebral and cardiovascular diseases. Intravascular plaques, a well-known pathological finding of atherosclerosis, have a necrotic core composed of macrophages and dead cells. Intraplaque macrophages, which are classified into various subtypes, play key roles in maintenance of normal cellular microenvironment. Excessive uptake of oxidized low-density lipoprotein causes conversion of macrophages to foam cells, and consequent progression/exacerbation of atherosclerosis. G-protein-coupled receptor 55 (GPR55) signaling has been reported to associate with atherosclerosis progression. We demonstrated recently that lysophosphatidylglucoside (lysoPtdGlc) is a specific ligand of GPR55, although in general physiological ligands of GPR55 are poorly understood. Phosphatidylglucoside is expressed on human monocytes and can be converted to lysoPtdGlc. In the present study, we examined possible involvement of lysoPtdGlc/GPR55 signaling in foam cell formation. In monocyte-derived M2c macrophages, lysoPtdGlc/GPR55 signaling inhibited translocation of ATP binding cassette subfamily A member 1 to plasma membrane, and cholesterol efflux. Such inhibitory effect was reversed by GPR55 antagonist ML193. LysoPtdGlc/GPR55 signaling in M2c macrophages was involved in excessive lipid accumulation, thereby promoting foam cell formation. Our findings suggest that lysoPtdGlc/GPR55 signaling is a potential therapeutic target for inhibition of atherosclerosis progression.


Comprehensive analysis of monoclonal antibodies against detergent-insoluble membrane/lipid rafts of HL60 cells.

  • Yasuhiro Yamazaki‎ et al.
  • Journal of immunological methods‎
  • 2006‎

Glycosphingolipids and cholesterol are principal components of plasmamembrane microdomains, i.e. lipid rafts. Recent studies revealed the possible presence of a variety of microdomains that distinctly differ in terms of their molecular composition and functions. To understand their precise structures and functions, we produced monoclonal antibodies (MAbs) by immunizing mice to the microdomains prepared from a fraction of detergent-insoluble membrane (DIM) of HL60 cells. Biochemical characterization of the antigen epitopes led to classification of the MAbs into two groups. One group consists of MAbs that react with lipids such as phosphatidylglucoside, lysophosphatidylinositol, and gangliosides (GM1a and GD1b), and the other consists of MAbs that react with proteins such as annexin I, aminopeptidase N and acrogranin. Immunofluorescence staining of HL60 cells with the MAbs, except for the MAbs that recognize lysophosphatidylinositol or annexin I, resulted in patchy-like images of the cell membranes. Interestingly, MAbs belonging to the former group had the potential to induce cell proliferation/differentiation in vitro. Our MAbs against the DIM fraction of HL60 cells can be valuable tools for the study of membrane microdomains.


Lysophosphatidylglucoside is a GPR55 -mediated chemotactic molecule for human monocytes and macrophages.

  • Xiaojia Li‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Neutrophils undergo spontaneous apoptosis within 24-48 h after leaving bone marrow. Apoptotic neutrophils are subsequently phagocytosed and cleared by macrophages, thereby maintaining neutrophil homeostasis. Previous studies have demonstrated involvement of lysophosphatidylglucoside (lysoPtdGlc), a degradation product of PtdGlc, in modality-specific repulsive guidance of spinal sensory axons, via its specific receptor GPR55. In the present study, using human monocytic cell line THP-1 as a model, we demonstrated that lysoPtdGlc induces monocyte/macrophage migration with typical bell-haped curve and a peak at concentration 10-9 M. Lysophosphatidylinositol (lysoPtdIns), a known GPR55 ligand, induced migration at higher concentration (10-7 M). LysoPtdGlc-treated cells had a polarized shape, whereas lysoPtdIns-treated cells had a spherical shape. In EZ-TAXIScan (chemotaxis) assay, lysoPtdGlc induced chemotactic migration activity of THP-1 cells, while lysoPtdIns induced random migration activity. GPR55 antagonist ML193 inhibited lysoPtdGlc-induced THP-1 cell migration, whereas lysoPtdIns-induced migration was inhibited by CB2-receptor inverse agonist. SiRNA experiments showed that GPR55 mediated lysoPtdGlc-induced migration, while lysoPtdIns-induced migration was mediated by CB2 receptor. Our findings, taken together, suggest that lysoPtdGlc functions as a chemotactic molecule for human monocytes/macrophages via GPR55 receptor, while lysoPtdIns induces random migration activity via CB2 receptor.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: