Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

VectorBase: a data resource for invertebrate vector genomics.

  • Daniel Lawson‎ et al.
  • Nucleic acids research‎
  • 2009‎

VectorBase (http://www.vectorbase.org) is an NIAID-funded Bioinformatic Resource Center focused on invertebrate vectors of human pathogens. VectorBase annotates and curates vector genomes providing a web accessible integrated resource for the research community. Currently, VectorBase contains genome information for three mosquito species: Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus, a body louse Pediculus humanus and a tick species Ixodes scapularis. Since our last report VectorBase has initiated a community annotation system, a microarray and gene expression repository and controlled vocabularies for anatomy and insecticide resistance. We have continued to develop both the software infrastructure and tools for interrogating the stored data.


Mapping and identification of essential gene functions on the X chromosome of Drosophila.

  • Annette Peter‎ et al.
  • EMBO reports‎
  • 2002‎

The Drosophila melanogaster genome consists of four chromosomes that contain 165 Mb of DNA, 120 Mb of which are euchromatic. The two Drosophila Genome Projects, in collaboration with Celera Genomics Systems, have sequenced the genome, complementing the previously established physical and genetic maps. In addition, the Berkeley Drosophila Genome Project has undertaken large-scale functional analysis based on mutagenesis by transposable P element insertions into autosomes. Here, we present a large-scale P element insertion screen for vital gene functions and a BAC tiling map for the X chromosome. A collection of 501 X-chromosomal P element insertion lines was used to map essential genes cytogenetically and to establish short sequence tags (STSs) linking the insertion sites to the genome. The distribution of the P element integration sites, the identified genes and transcription units as well as the expression patterns of the P-element-tagged enhancers is described and discussed.


The evolution of the Anopheles 16 genomes project.

  • Daniel E Neafsey‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2013‎

We report the imminent completion of a set of reference genome assemblies for 16 species of Anopheles mosquitoes. In addition to providing a generally useful resource for comparative genomic analyses, these genome sequences will greatly facilitate exploration of the capacity exhibited by some Anopheline mosquito species to serve as vectors for malaria parasites. A community analysis project will commence soon to perform a thorough comparative genomic investigation of these newly sequenced genomes. Completion of this project via the use of short next-generation sequence reads required innovation in both the bioinformatic and laboratory realms, and the resulting knowledge gained could prove useful for genome sequencing projects targeting other unconventional genomes.


Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa.

  • Antonio M Mendes‎ et al.
  • PLoS pathogens‎
  • 2008‎

In much of sub-Saharan Africa, the mosquito Anopheles gambiae is the main vector of the major human malaria parasite, Plasmodium falciparum. Convenient laboratory studies have identified mosquito genes that affect positively or negatively the developmental cycle of the model rodent parasite, P. berghei. Here, we use transcription profiling and reverse genetics to explore whether five disparate mosquito gene regulators of P. berghei development are also pertinent to A. gambiae/P. falciparum interactions in semi-natural conditions, using field isolates of this parasite and geographically related mosquitoes. We detected broadly similar albeit not identical transcriptional responses of these genes to the two parasite species. Gene silencing established that two genes affect similarly both parasites: infections are hindered by the intracellular local activator of actin cytoskeleton dynamics, WASP, but promoted by the hemolymph lipid transporter, ApoII/I. Since P. berghei is not a natural parasite of A. gambiae, these data suggest that the effects of these genes have not been drastically altered by constant interaction and co-evolution of A. gambiae and P. falciparum; this conclusion allowed us to investigate further the mode of action of these two genes in the laboratory model system using a suite of genetic tools and infection assays. We showed that both genes act at the level of midgut invasion during the parasite's developmental transition from ookinete to oocyst. ApoII/I also affects the early stages of oocyst development. These are the first mosquito genes whose significant effects on P. falciparum field isolates have been established by direct experimentation. Importantly, they validate for semi-field human malaria transmission the concept of parasite antagonists and agonists.


SNP discovery and molecular evolution in Anopheles gambiae, with special emphasis on innate immune system.

  • Anna Cohuet‎ et al.
  • BMC genomics‎
  • 2008‎

Anopheles innate immunity affects Plasmodium development and is a potential target of innovative malaria control strategies. The extent and distribution of nucleotide diversity in immunity genes might provide insights into the evolutionary forces that condition pathogen-vector interactions. The discovery of polymorphisms is an essential step towards association studies of susceptibility to infection.


Paternal effect of the nuclear formin-like protein MISFIT on Plasmodium development in the mosquito vector.

  • Ellen S C Bushell‎ et al.
  • PLoS pathogens‎
  • 2009‎

Malaria parasites must undergo sexual and sporogonic development in mosquitoes before they can infect their vertebrate hosts. We report the discovery and characterization of MISFIT, the first protein with paternal effect on the development of the rodent malaria parasite Plasmodium berghei in Anopheles mosquitoes. MISFIT is expressed in male gametocytes and localizes to the nuclei of male gametocytes, zygotes and ookinetes. Gene disruption results in mutant ookinetes with reduced genome content, microneme defects and altered transcriptional profiles of putative cell cycle regulators, which yet successfully invade the mosquito midgut. However, developmental arrest ensues during the ookinete transformation to oocysts leading to malaria transmission blockade. Genetic crosses between misfit mutant parasites and parasites that are either male or female gamete deficient reveal a strict requirement for a male misfit allele. MISFIT belongs to the family of formin-like proteins, which are known regulators of the dynamic remodeling of actin and microtubule networks. Our data identify the ookinete-to-oocyst transition as a critical cell cycle checkpoint in Plasmodium development and lead us to hypothesize that MISFIT may be a regulator of cell cycle progression. This study offers a new perspective for understanding the male contribution to malaria parasite development in the mosquito vector.


Mosaic genome architecture of the Anopheles gambiae species complex.

  • Rui Wang-Sattler‎ et al.
  • PloS one‎
  • 2007‎

Attempts over the last three decades to reconstruct the phylogenetic history of the Anopheles gambiae species complex have been important for developing better strategies to control malaria transmission.


Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae.

  • Stephanie Blandin‎ et al.
  • Cell‎
  • 2004‎

Anopheles mosquitoes are major vectors of human malaria in Africa. Large variation exists in the ability of mosquitoes to serve as vectors and to transmit malaria parasites, but the molecular mechanisms that determine vectorial capacity remain poorly understood. We report that the hemocyte-specific complement-like protein TEP1 from the mosquito Anopheles gambiae binds to and mediates killing of midgut stages of the rodent malaria parasite Plasmodium berghei. The dsRNA knockdown of TEP1 in adults completely abolishes melanotic refractoriness in a genetically selected refractory strain. Moreover, in susceptible mosquitoes this knockdown increases the number of developing parasites. Our results suggest that the TEP1-dependent parasite killing is followed by a TEP1-independent clearance of dead parasites by lysis and/or melanization. Further elucidation of the molecular mechanisms of TEP1-mediated parasite killing will be of great importance for our understanding of the principles of vectorial capacity in insects.


Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites.

  • Stephan Meister‎ et al.
  • PLoS pathogens‎
  • 2009‎

Recognition of peptidoglycan (PGN) is paramount for insect antibacterial defenses. In the fruit fly Drosophila melanogaster, the transmembrane PGN Recognition Protein LC (PGRP-LC) is a receptor of the Imd signaling pathway that is activated after infection with bacteria, mainly Gram-negative (Gram-). Here we demonstrate that bacterial infections of the malaria mosquito Anopheles gambiae are sensed by the orthologous PGRPLC protein which then activates a signaling pathway that involves the Rel/NF-kappaB transcription factor REL2. PGRPLC signaling leads to transcriptional induction of antimicrobial peptides at early stages of hemolymph infections with the Gram-positive (Gram+) bacterium Staphylococcus aureus, but a different signaling pathway might be used in infections with the Gram- bacterium Escherichia coli. The size of mosquito symbiotic bacteria populations and their dramatic proliferation after a bloodmeal, as well as intestinal bacterial infections, are also controlled by PGRPLC signaling. We show that this defense response modulates mosquito infection intensities with malaria parasites, both the rodent model parasite, Plasmodium berghei, and field isolates of the human parasite, Plasmodium falciparum. We propose that the tripartite interaction between mosquito microbial communities, PGRPLC-mediated antibacterial defense and infections with Plasmodium can be exploited in future interventions aiming to control malaria transmission. Molecular analysis and structural modeling provided mechanistic insights for the function of PGRPLC. Alternative splicing of PGRPLC transcripts produces three main isoforms, of which PGRPLC3 appears to have a key role in the resistance to bacteria and modulation of Plasmodium infections. Structural modeling indicates that PGRPLC3 is capable of binding monomeric PGN muropeptides but unable to initiate dimerization with other isoforms. A dual role of this isoform is hypothesized: it sequesters monomeric PGN dampening weak signals and locks other PGRPLC isoforms in binary immunostimulatory complexes further enhancing strong signals.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: