Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 43 papers

Outcome of delirium in critically ill patients: systematic review and meta-analysis.

  • Jorge I F Salluh‎ et al.
  • BMJ (Clinical research ed.)‎
  • 2015‎

To determine the relation between delirium in critically ill patients and their outcomes in the short term (in the intensive care unit and in hospital) and after discharge from hospital.


Carnitine Acetyltransferase Mitigates Metabolic Inertia and Muscle Fatigue during Exercise.

  • Sarah E Seiler‎ et al.
  • Cell metabolism‎
  • 2015‎

Acylcarnitine metabolites have gained attention as biomarkers of nutrient stress, but their physiological relevance and metabolic purpose remain poorly understood. Short-chain carnitine conjugates, including acetylcarnitine, derive from their corresponding acyl-CoA precursors via the action of carnitine acetyltransferase (CrAT), a bidirectional mitochondrial matrix enzyme. We show here that contractile activity reverses acetylcarnitine flux in muscle, from net production and efflux at rest to net uptake and consumption during exercise. Disruption of this switch in mice with muscle-specific CrAT deficiency resulted in acetyl-CoA deficit, perturbed energy charge, and diminished exercise tolerance, whereas acetylcarnitine supplementation produced opposite outcomes in a CrAT-dependent manner. Likewise, in exercise-trained compared to untrained humans, post-exercise phosphocreatine recovery rates were positively associated with CrAT activity and coincided with dramatic shifts in muscle acetylcarnitine dynamics. These findings show acetylcarnitine serves as a critical acetyl buffer for working muscles and provide insight into potential therapeutic strategies for combatting exercise intolerance.


Adverse Effects of Fenofibrate in Mice Deficient in the Protein Quality Control Regulator, CHIP.

  • Saranya Ravi‎ et al.
  • Journal of cardiovascular development and disease‎
  • 2018‎

We previously reported how the loss of CHIP expression (Carboxyl terminus of Hsc70-Interacting Protein) during pressure overload resulted in robust cardiac dysfunction, which was accompanied by a failure to maintain ATP levels in the face of increased energy demand. In this study, we analyzed the cardiac metabolome after seven days of pressure overload and found an increase in long-chain and medium-chain fatty acid metabolites in wild-type hearts. This response was attenuated in mice that lack expression of CHIP (CHIP-/-). These findings suggest that CHIP may play an essential role in regulating oxidative metabolism pathways that are regulated, in part, by the nuclear receptor PPARα (Peroxisome Proliferator-Activated Receptor alpha). Next, we challenged CHIP-/- mice with the PPARα agonist called fenofibrate. We found that treating CHIP-/- mice with fenofibrate for five weeks under non-pressure overload conditions resulted in decreased skeletal muscle mass, compared to wild-type mice, and a marked increase in cardiac fibrosis accompanied by a decrease in cardiac function. Fenofibrate resulted in decreased mitochondrial cristae density in CHIP-/- hearts as well as decreased expression of genes involved in the initiation of autophagy and mitophagy, which suggests that a metabolic challenge, in the absence of CHIP expression, impacts pathways that contribute to mitochondrial quality control. In conclusion, in the absence of functional CHIP expression, fenofibrate results in unexpected skeletal muscle and cardiac pathologies. These findings are particularly relevant to patients harboring loss-of-function mutations in CHIP and are consistent with a prominent role for CHIP in regulating cardiac metabolism.


Rapid and weight-independent improvement of glucose tolerance induced by a peptide designed to elicit apoptosis in adipose tissue endothelium.

  • Dong-Hoon Kim‎ et al.
  • Diabetes‎
  • 2012‎

A peptide designed to induce apoptosis of endothelium in white adipose tissue (WAT) decreases adiposity. The goal of this work is to determine whether targeting of WAT endothelium results in impaired glucose regulation as a result of impaired WAT function. Glucose tolerance tests were performed on days 2 and 3 of treatment with vehicle (HF-V) or proapoptotic peptide (HF-PP) and mice pair-fed to HF-PP (HF-PF) in obese mice on a high-fat diet (HFD). Serum metabolic variables, including lipid profile, adipokines, individual fatty acids, and acylcarnitines, were measured. Microarray analysis was performed in epididymal fat of lean or obese mice treated with vehicle or proapoptotic peptide (PP). PP rapidly and potently improved glucose tolerance of obese mice in a weight- and food intake-independent manner. Serum insulin and triglycerides were decreased in HF-PP relative to HF-V. Levels of fatty acids and acylcarnitines were distinctive in HF-PP compared with HF-V or HF-PF. Microarray analysis in AT revealed that pathways involved in mitochondrial dysfunction, oxidative phosphorylation, and branched-chain amino acid degradation were changed by exposure to HFD and were reversed by PP administration. These studies suggest a novel role of the AT vasculature in glucose homeostasis and lipid metabolism.


Ablation of steroid receptor coactivator-3 resembles the human CACT metabolic myopathy.

  • Brian York‎ et al.
  • Cell metabolism‎
  • 2012‎

Oxidation of lipid substrates is essential for survival in fasting and other catabolic conditions, sparing glucose for the brain and other glucose-dependent tissues. Here we show Steroid Receptor Coactivator-3 (SRC-3) plays a central role in long chain fatty acid metabolism by directly regulating carnitine/acyl-carnitine translocase (CACT) gene expression. Genetic deficiency of CACT in humans is accompanied by a constellation of metabolic and toxicity phenotypes including hypoketonemia, hypoglycemia, hyperammonemia, and impaired neurologic, cardiac and skeletal muscle performance, each of which is apparent in mice lacking SRC-3 expression. Consistent with human cases of CACT deficiency, dietary rescue with short chain fatty acids drastically attenuates the clinical hallmarks of the disease in mice devoid of SRC-3. Collectively, our results position SRC-3 as a key regulator of β-oxidation. Moreover, these findings allow us to consider platform coactivators such as the SRCs as potential contributors to syndromes such as CACT deficiency, previously considered as monogenic.


Caloric restriction alters the metabolic response to a mixed-meal: results from a randomized, controlled trial.

  • Kim M Huffman‎ et al.
  • PloS one‎
  • 2012‎

To determine if caloric restriction (CR) would cause changes in plasma metabolic intermediates in response to a mixed meal, suggestive of changes in the capacity to adapt fuel oxidation to fuel availability or metabolic flexibility, and to determine how any such changes relate to insulin sensitivity (S(I)).


Further developments towards a genome-scale metabolic model of yeast.

  • Paul D Dobson‎ et al.
  • BMC systems biology‎
  • 2010‎

To date, several genome-scale network reconstructions have been used to describe the metabolism of the yeast Saccharomyces cerevisiae, each differing in scope and content. The recent community-driven reconstruction, while rigorously evidenced and well annotated, under-represented metabolite transport, lipid metabolism and other pathways, and was not amenable to constraint-based analyses because of lack of pathway connectivity.


Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling.

  • Christine T Ferrara‎ et al.
  • PLoS genetics‎
  • 2008‎

Although numerous quantitative trait loci (QTL) influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s) and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptin(ob/ob) and the diabetes-susceptible BTBR leptin(ob/ob) mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines). We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.


e-Science and biological pathway semantics.

  • Joanne S Luciano‎ et al.
  • BMC bioinformatics‎
  • 2007‎

The development of e-Science presents a major set of opportunities and challenges for the future progress of biological and life scientific research. Major new tools are required and corresponding demands are placed on the high-throughput data generated and used in these processes. Nowhere is the demand greater than in the semantic integration of these data. Semantic Web tools and technologies afford the chance to achieve this semantic integration. Since pathway knowledge is central to much of the scientific research today it is a good test-bed for semantic integration. Within the context of biological pathways, the BioPAX initiative, part of a broader movement towards the standardization and integration of life science databases, forms a necessary prerequisite for its successful application of e-Science in health care and life science research. This paper examines whether BioPAX, an effort to overcome the barrier of disparate and heterogeneous pathway data sources, addresses the needs of e-Science.


Disrupted Maturation of the Microbiota and Metabolome among Extremely Preterm Infants with Postnatal Growth Failure.

  • Noelle E Younge‎ et al.
  • Scientific reports‎
  • 2019‎

Growth failure during infancy is a major global problem that has adverse effects on long-term health and neurodevelopment. Preterm infants are disproportionately affected by growth failure and its effects. Herein we found that extremely preterm infants with postnatal growth failure have disrupted maturation of the intestinal microbiota, characterized by persistently low diversity, dominance of pathogenic bacteria within the Enterobacteriaceae family, and a paucity of strictly anaerobic taxa including Veillonella relative to infants with appropriate postnatal growth. Metabolomic profiling of infants with growth failure demonstrated elevated serum acylcarnitines, fatty acids, and other byproducts of lipolysis and fatty acid oxidation. Machine learning algorithms for normal maturation of the microbiota and metabolome among infants with appropriate growth revealed a pattern of delayed maturation of the microbiota and metabolome among infants with growth failure. Collectively, we identified novel microbial and metabolic features of growth failure in preterm infants and potentially modifiable targets for intervention.


Incidence and Outcomes of Acute Respiratory Distress Syndrome in Brain-Injured Patients Receiving Invasive Ventilation: A Secondary Analysis of the ENIO Study.

  • Shaurya Taran‎ et al.
  • Journal of intensive care medicine‎
  • 2024‎

Background: Acute respiratory distress syndrome (ARDS) is an important pulmonary complication in brain-injured patients receiving invasive mechanical ventilation (IMV). We aimed to evaluate the incidence and association between ARDS and clinical outcomes in patients with different forms of acute brain injury requiring IMV in the intensive care unit (ICU). Methods: This was a preplanned secondary analysis of a prospective, multicenter, international cohort study (NCT03400904). We included brain-injured patients receiving IMV for ≥ 24 h. ARDS was the main exposure of interest and was identified during index ICU admission using the Berlin definition. We examined the incidence and adjusted association of ARDS with ICU mortality, ICU length of stay, duration of IMV, and extubation failure. Outcomes were evaluated using mixed-effect logistic regression and cause-specific Cox proportional hazards models. Results: 1492 patients from 67 hospitals and 16 countries were included in the analysis, of whom 137 individuals developed ARDS (9.2% of overall cohort). Across countries, the median ARDS incidence was 5.1% (interquartile range [IQR] 0-10; range 0-27.3). ARDS was associated with increased ICU mortality (adjusted odds ratio (OR) 2.66; 95% confidence interval [CI], 1.29-5.48), longer ICU length of stay (adjusted hazard ratio [HR] 0.59; 95% CI, 0.48-0.73), and longer duration of IMV (adjusted HR 0.54; 95% CI, 0.44-0.67). The association between ARDS and extubation failure approached statistical significance (adjusted HR 1.48; 95% CI 0.99-2.21). Higher ARDS severity was associated with incrementally longer ICU length of stay and longer cumulative duration of IMV. Findings remained robust in a sensitivity analysis evaluating the magnitude of unmeasured confounding. Conclusions: In this cohort of acutely brain-injured patients, the incidence of ARDS was similar to that reported in other mixed cohorts of critically ill patients. Development of ARDS was associated with worse outcomes.


Metabolic Networks and Metabolites Underlie Associations Between Maternal Glucose During Pregnancy and Newborn Size at Birth.

  • Denise M Scholtens‎ et al.
  • Diabetes‎
  • 2016‎

Maternal metabolites and metabolic networks underlying associations between maternal glucose during pregnancy and newborn birth weight and adiposity demand fuller characterization. We performed targeted and nontargeted gas chromatography/mass spectrometry metabolomics on maternal serum collected at fasting and 1 h following glucose beverage consumption during an oral glucose tolerance test (OGTT) for 400 northern European mothers at ∼28 weeks' gestation in the Hyperglycemia and Adverse Pregnancy Outcome Study. Amino acids, fatty acids, acylcarnitines, and products of lipid metabolism decreased and triglycerides increased during the OGTT. Analyses of individual metabolites indicated limited maternal glucose associations at fasting, but broader associations, including amino acids, fatty acids, carbohydrates, and lipids, were found at 1 h. Network analyses modeling metabolite correlations provided context for individual metabolite associations and elucidated collective associations of multiple classes of metabolic fuels with newborn size and adiposity, including acylcarnitines, fatty acids, carbohydrates, and organic acids. Random forest analyses indicated an improved ability to predict newborn size outcomes by using maternal metabolomics data beyond traditional risk factors, including maternal glucose. Broad-scale association of fuel metabolites with maternal glucose is evident during pregnancy, with unique maternal metabolites potentially contributing specifically to newborn birth weight and adiposity.


Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation.

  • Brante P Sampey‎ et al.
  • PloS one‎
  • 2012‎

Obesity has reached epidemic proportions worldwide. Several animal models of obesity exist, but studies are lacking that compare traditional lard-based high fat diets (HFD) to "Cafeteria diets" (CAF) consisting of nutrient poor human junk food. Our previous work demonstrated the rapid and severe obesogenic and inflammatory consequences of CAF compared to HFD including rapid weight gain, markers of Metabolic Syndrome, multi-tissue lipid accumulation, and dramatic inflammation. To identify potential mediators of CAF-induced obesity and Metabolic Syndrome, we used metabolomic analysis to profile serum, muscle, and white adipose from rats fed CAF, HFD, or standard control diets. Principle component analysis identified elevations in clusters of fatty acids and acylcarnitines. These increases in metabolites were associated with systemic mitochondrial dysfunction that paralleled weight gain, physiologic measures of Metabolic Syndrome, and tissue inflammation in CAF-fed rats. Spearman pairwise correlations between metabolites, physiologic, and histologic findings revealed strong correlations between elevated markers of inflammation in CAF-fed animals, measured as crown like structures in adipose, and specifically the pro-inflammatory saturated fatty acids and oxidation intermediates laurate and lauroyl carnitine. Treatment of bone marrow-derived macrophages with lauroyl carnitine polarized macrophages towards the M1 pro-inflammatory phenotype through downregulation of AMPK and secretion of pro-inflammatory cytokines. Results presented herein demonstrate that compared to a traditional HFD model, the CAF diet provides a robust model for diet-induced human obesity, which models Metabolic Syndrome-related mitochondrial dysfunction in serum, muscle, and adipose, along with pro-inflammatory metabolite alterations. These data also suggest that modifying the availability or metabolism of saturated fatty acids may limit the inflammation associated with obesity leading to Metabolic Syndrome.


Pathogenesis of A⁻β⁺ ketosis-prone diabetes.

  • Sanjeet G Patel‎ et al.
  • Diabetes‎
  • 2013‎

A⁻β⁺ ketosis-prone diabetes (KPD) is an emerging syndrome of obesity, unprovoked ketoacidosis, reversible β-cell dysfunction, and near-normoglycemic remission. We combined metabolomics with targeted kinetic measurements to investigate its pathophysiology. Fasting plasma fatty acids, acylcarnitines, and amino acids were quantified in 20 KPD patients compared with 19 nondiabetic control subjects. Unique signatures in KPD--higher glutamate but lower glutamine and citrulline concentrations, increased β-hydroxybutyryl-carnitine, decreased isovaleryl-carnitine (a leucine catabolite), and decreased tricarboxylic acid (TCA) cycle intermediates--generated hypotheses that were tested through stable isotope/mass spectrometry protocols in nine new-onset, stable KPD patients compared with seven nondiabetic control subjects. Free fatty acid flux and acetyl CoA flux and oxidation were similar, but KPD had slower acetyl CoA conversion to β-hydroxybutyrate; higher fasting β-hydroxybutyrate concentration; slower β-hydroxybutyrate oxidation; faster leucine oxidative decarboxylation; accelerated glutamine conversion to glutamate without increase in glutamate carbon oxidation; and slower citrulline flux, with diminished glutamine amide-nitrogen transfer to citrulline. The confluence of metabolomic and kinetic data indicate a distinctive pathogenic sequence: impaired ketone oxidation and fatty acid utilization for energy, leading to accelerated leucine catabolism and transamination of α-ketoglutarate to glutamate, with impaired TCA anaplerosis of glutamate carbon. They highlight a novel process of defective energy production and ketosis in A⁻β⁺ KPD.


Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women.

  • Kim M Huffman‎ et al.
  • Diabetes care‎
  • 2009‎

To determine whether circulating metabolic intermediates are related to insulin resistance and beta-cell dysfunction in individuals at risk for type 2 diabetes.


A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance.

  • Christopher B Newgard‎ et al.
  • Cell metabolism‎
  • 2009‎

Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA), or standard chow (SC) diets. Despite having reduced food intake and a low rate of weight gain equivalent to the SC group, HF/BCAA rats were as insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1Ser307 and by accumulation of multiple acylcarnitines in muscle, and it was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance.


High heritability of metabolomic profiles in families burdened with premature cardiovascular disease.

  • Svati H Shah‎ et al.
  • Molecular systems biology‎
  • 2009‎

Integration of genetic and metabolic profiling holds promise for providing insight into human disease. Coronary artery disease (CAD) is strongly heritable, but the heritability of metabolomic profiles has not been evaluated in humans. We performed quantitative mass spectrometry-based metabolic profiling in 117 individuals within eight multiplex families from the GENECARD study of premature CAD. Heritabilities were calculated using variance components. We found high heritabilities for amino acids (arginine, ornithine, alanine, proline, leucine/isoleucine, valine, glutamate/glutamine, phenylalanine and glycine; h(2)=0.33-0.80, P=0.005-1.9 x 10(-16)), free fatty acids (arachidonic, palmitic, linoleic; h(2)=0.48-0.59, P=0.002-0.00005) and acylcarnitines (h(2)=0.23-0.79, P=0.05-0.0000002). Principal components analysis was used to identify metabolite clusters. Reflecting individual metabolites, several components were heritable, including components comprised of ketones, beta-hydroxybutyrate and C2-acylcarnitine (h(2)=0.61); short- and medium-chain acylcarnitines (h(2)=0.39); amino acids (h(2)=0.44); long-chain acylcarnitines (h(2)=0.39) and branched-chain amino acids (h(2)=0.27). We report a novel finding of high heritabilities of metabolites in premature CAD, establishing a possible genetic basis for these profiles. These results have implications for understanding CAD pathophysiology and genetics.


Methodology capture: discriminating between the "best" and the rest of community practice.

  • James M Eales‎ et al.
  • BMC bioinformatics‎
  • 2008‎

The methodologies we use both enable and help define our research. However, as experimental complexity has increased the choice of appropriate methodologies has become an increasingly difficult task. This makes it difficult to keep track of available bioinformatics software, let alone the most suitable protocols in a specific research area. To remedy this we present an approach for capturing methodology from literature in order to identify and, thus, define best practice within a field.


Metformin preconditioning protects against myocardial stunning and preserves protein translation in a mouse model of cardiac arrest.

  • Cody A Rutledge‎ et al.
  • Journal of molecular and cellular cardiology plus‎
  • 2023‎

Cardiac arrest (CA) causes high mortality due to multi-system organ damage attributable to ischemia-reperfusion injury. Recent work in our group found that among diabetic patients who experienced cardiac arrest, those taking metformin had less evidence of cardiac and renal damage after cardiac arrest when compared to those not taking metformin. Based on these observations, we hypothesized that metformin's protective effects in the heart were mediated by AMPK signaling, and that AMPK signaling could be targeted as a therapeutic strategy following resuscitation from CA. The current study investigates metformin interventions on cardiac and renal outcomes in a non-diabetic CA mouse model. We found that two weeks of metformin pretreatment protects against reduced ejection fraction and reduces kidney ischemia-reperfusion injury at 24 h post-arrest. This cardiac and renal protection depends on AMPK signaling, as demonstrated by outcomes in mice pretreated with the AMPK activator AICAR or metformin plus the AMPK inhibitor compound C. At this 24-h time point, heart gene expression analysis showed that metformin pretreatment caused changes supporting autophagy, antioxidant response, and protein translation. Further investigation found associated improvements in mitochondrial structure and markers of autophagy. Notably, Western analysis indicated that protein synthesis was preserved in arrest hearts of animals pretreated with metformin. The AMPK activation-mediated preservation of protein synthesis was also observed in a hypoxia/reoxygenation cell culture model. Despite the positive impacts of pretreatment in vivo and in vitro, metformin did not preserve ejection fraction when deployed at resuscitation. Taken together, we propose that metformin's in vivo cardiac preservation occurs through AMPK activation, requires adaptation before arrest, and is associated with preserved protein translation.


Respiratory Phenomics across Multiple Models of Protein Hyperacylation in Cardiac Mitochondria Reveals a Marginal Impact on Bioenergetics.

  • Kelsey H Fisher-Wellman‎ et al.
  • Cell reports‎
  • 2019‎

Acyl CoA metabolites derived from the catabolism of carbon fuels can react with lysine residues of mitochondrial proteins, giving rise to a large family of post-translational modifications (PTMs). Mass spectrometry-based detection of thousands of acyl-PTMs scattered throughout the proteome has established a strong link between mitochondrial hyperacylation and cardiometabolic diseases; however, the functional consequences of these modifications remain uncertain. Here, we use a comprehensive respiratory diagnostics platform to evaluate three disparate models of mitochondrial hyperacylation in the mouse heart caused by genetic deletion of malonyl CoA decarboxylase (MCD), SIRT5 demalonylase and desuccinylase, or SIRT3 deacetylase. In each case, elevated acylation is accompanied by marginal respiratory phenotypes. Of the >60 mitochondrial energy fluxes evaluated, the only outcome consistently observed across models is a ∼15% decrease in ATP synthase activity. In sum, the findings suggest that the vast majority of mitochondrial acyl PTMs occur as stochastic events that minimally affect mitochondrial bioenergetics.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: