Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 155 papers

Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease.

  • Samir Softic‎ et al.
  • Digestive diseases and sciences‎
  • 2016‎

Nonalcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome. Overconsumption of high-fat diet (HFD) and increased intake of sugar-sweetened beverages are major risk factors for development of NAFLD. Today the most commonly consumed sugar is high fructose corn syrup. Hepatic lipids may be derived from dietary intake, esterification of plasma free fatty acids (FFA) or hepatic de novo lipogenesis (DNL). A central abnormality in NAFLD is enhanced DNL. Hepatic DNL is increased in individuals with NAFLD, while the contribution of dietary fat and plasma FFA to hepatic lipids is not significantly altered. The importance of DNL in NAFLD is further established in mouse studies with knockout of genes involved in this process. Dietary fructose increases levels of enzymes involved in DNL even more strongly than HFD. Several properties of fructose metabolism make it particularly lipogenic. Fructose is absorbed via portal vein and delivered to the liver in much higher concentrations as compared to other tissues. Fructose increases protein levels of all DNL enzymes during its conversion into triglycerides. Additionally, fructose supports lipogenesis in the setting of insulin resistance as fructose does not require insulin for its metabolism, and it directly stimulates SREBP1c, a major transcriptional regulator of DNL. Fructose also leads to ATP depletion and suppression of mitochondrial fatty acid oxidation, resulting in increased production of reactive oxygen species. Furthermore, fructose promotes ER stress and uric acid formation, additional insulin independent pathways leading to DNL. In summary, fructose metabolism supports DNL more strongly than HFD and hepatic DNL is a central abnormality in NAFLD. Disrupting fructose metabolism in the liver may provide a new therapeutic option for the treatment of NAFLD.


Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis.

  • Brian T O'Neill‎ et al.
  • The Journal of clinical investigation‎
  • 2016‎

Diabetes strongly impacts protein metabolism, particularly in skeletal muscle. Insulin and IGF-1 enhance muscle protein synthesis through their receptors, but the relative roles of each in muscle proteostasis have not been fully elucidated. Using mice with muscle-specific deletion of the insulin receptor (M-IR-/- mice), the IGF-1 receptor (M-IGF1R-/- mice), or both (MIGIRKO mice), we assessed the relative contributions of IR and IGF1R signaling to muscle proteostasis. In differentiated muscle, IR expression predominated over IGF1R expression, and correspondingly, M-IR-/- mice displayed a moderate reduction in muscle mass whereas M-IGF1R-/- mice did not. However, these receptors serve complementary roles, such that double-knockout MIGIRKO mice displayed a marked reduction in muscle mass that was linked to increases in proteasomal and autophagy-lysosomal degradation, accompanied by a high-protein-turnover state. Combined muscle-specific deletion of FoxO1, FoxO3, and FoxO4 in MIGIRKO mice reversed increased autophagy and completely rescued muscle mass without changing proteasomal activity. These data indicate that signaling via IR is more important than IGF1R in controlling proteostasis in differentiated muscle. Nonetheless, the overlap of IR and IGF1R signaling is critical to the regulation of muscle protein turnover, and this regulation depends on suppression of FoxO-regulated, autophagy-mediated protein degradation.


Lipodystrophy Due to Adipose Tissue-Specific Insulin Receptor Knockout Results in Progressive NAFLD.

  • Samir Softic‎ et al.
  • Diabetes‎
  • 2016‎

Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and is also a common feature of type 2 diabetes, obesity, and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy created by a fat-specific knockout of the insulin receptor (F-IRKO) or both IR and insulin-like growth factor 1 receptor (F-IR/IGFRKO). These mice develop severe lipodystrophy, diabetes, hyperlipidemia, and fatty liver disease within the first weeks of life. By 12 weeks of age, liver demonstrated increased reactive oxygen species, lipid peroxidation, histological evidence of balloon degeneration, and elevated serum alanine aminotransferase and aspartate aminotransferase levels. In these lipodystrophic mice, stored liver lipids can be used for energy production, as indicated by a marked decrease in liver weight with fasting and increased liver fibroblast growth factor 21 expression and intact ketogenesis. By 52 weeks of age, liver accounted for 25% of body weight and showed continued balloon degeneration in addition to inflammation, fibrosis, and highly dysplastic liver nodules. Progression of liver disease was associated with improvement in blood glucose levels, with evidence of altered expression of gluconeogenic and glycolytic enzymes. However, these mice were able to mobilize stored glycogen in response to glucagon. Feeding F-IRKO and F-IR/IGFRKO mice a high-fat diet for 12 weeks accelerated the liver injury and normalization of blood glucose levels. Thus, severe fatty liver disease develops early in lipodystrophic mice and progresses to advanced nonalcoholic steatohepatitis with highly dysplastic liver nodules. The liver injury is propagated by lipotoxicity and is associated with improved blood glucose levels.


Effect of cholesterol reduction on receptor signaling in neurons.

  • Kenji Fukui‎ et al.
  • The Journal of biological chemistry‎
  • 2015‎

Diabetes mellitus is associated with a variety of complications, including alterations in the central nervous system (CNS). We have recently shown that diabetes results in a reduction of cholesterol synthesis in the brain due to decreased insulin stimulation of SREBP2-mediated cholesterol synthesis in neuronal and glial cells. In the present study, we explored the effects of the decrease in cholesterol on neuronal cell function using GT1-7 hypothalamic cells subjected to cholesterol depletion in vitro using three independent methods: 1) exposure to methyl-β-cyclodextrin, 2) treatment with the HMG-CoA reductase inhibitor simvastatin, and 3) shRNA-mediated knockdown of SREBP2. All three methods produced 20-31% reductions in cellular cholesterol content, similar to the decrease in cholesterol synthesis observed in diabetes. All cholesterol-depleted neuron-derived cells, independent of the method of reduction, exhibited decreased phosphorylation/activation of IRS-1 and AKT following stimulation by insulin, insulin-like growth factor-1, or the neurotrophins (NGF and BDNF). ERK phosphorylation/activation was also decreased after methyl-β-cyclodextrin and statin treatment but increased in cells following SREBP2 knockdown. In addition, apoptosis in the presence of amyloid-β was increased. Reduction in cellular cholesterol also resulted in increased basal autophagy and impairment of induction of autophagy by glucose deprivation. Together, these data indicate that a reduction in neuron-derived cholesterol content, similar to that observed in diabetic brain, creates a state of insulin and growth factor resistance that could contribute to CNS-related complications of diabetes, including increased risk of neurodegenerative diseases, such as Alzheimer disease.


Insulin resistance in brain alters dopamine turnover and causes behavioral disorders.

  • Andre Kleinridders‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

Diabetes and insulin resistance are associated with altered brain imaging, depression, and increased rates of age-related cognitive impairment. Here we demonstrate that mice with a brain-specific knockout of the insulin receptor (NIRKO mice) exhibit brain mitochondrial dysfunction with reduced mitochondrial oxidative activity, increased levels of reactive oxygen species, and increased levels of lipid and protein oxidation in the striatum and nucleus accumbens. NIRKO mice also exhibit increased levels of monoamine oxidase A and B (MAO A and B) leading to increased dopamine turnover in these areas. Studies in cultured neurons and glia cells indicate that these changes in MAO A and B are a direct consequence of loss of insulin signaling. As a result, NIRKO mice develop age-related anxiety and depressive-like behaviors that can be reversed by treatment with MAO inhibitors, as well as the tricyclic antidepressant imipramine, which inhibits MAO activity and reduces oxidative stress. Thus, insulin resistance in brain induces mitochondrial and dopaminergic dysfunction leading to anxiety and depressive-like behaviors, demonstrating a potential molecular link between central insulin resistance and behavioral disorders.


Severe insulin resistance alters metabolism in mesenchymal progenitor cells.

  • Bharti Balhara‎ et al.
  • Endocrinology‎
  • 2015‎

Donohue syndrome (DS) is characterized by severe insulin resistance due to mutations in the insulin receptor (INSR) gene. To identify molecular defects contributing to metabolic dysregulation in DS in the undifferentiated state, we generated mesenchymal progenitor cells (MPCs) from induced pluripotent stem cells derived from a 4-week-old female with DS and a healthy newborn male (control). INSR mRNA and protein were significantly reduced in DS MPC (for β-subunit, 64% and 89% reduction, respectively, P < .05), but IGF1R mRNA and protein did not differ vs control. Insulin-stimulated phosphorylation of INSR or the downstream substrates insulin receptor substrate 1 and protein kinase B did not differ, but ERK phosphorylation tended to be reduced in DS (32% decrease, P = .07). By contrast, IGF-1 and insulin-stimulated insulin-like growth factor 1 (IGF-1) receptor phosphorylation were increased in DS (IGF-1, 8.5- vs 4.5-fold increase; INS, 11- vs 6-fold; P < .05). DS MPC tended to have higher oxygen consumption in both the basal state (87% higher, P =.09) and in response to the uncoupler carbonyl cyanide-p-triflouromethoxyphenylhydrazone (2-fold increase, P =.06). Although mitochondrial DNA or mass did not differ, oxidative phosphorylation protein complexes III and V were increased in DS (by 37% and 6%, respectively; P < .05). Extracellular acidification also tended to increase in DS (91% increase, P = .07), with parallel significant increases in lactate secretion (34% higher at 4 h, P < .05). In summary, DS MPC maintain signaling downstream of the INSR, suggesting that IGF-1R signaling may partly compensate for INSR mutations. However, alterations in receptor expression and pathway-specific defects in insulin signaling, even in undifferentiated cells, can alter cellular oxidative metabolism, potentially via transcriptional mechanisms.


Gut microbiota modulate neurobehavior through changes in brain insulin sensitivity and metabolism.

  • Marion Soto‎ et al.
  • Molecular psychiatry‎
  • 2018‎

Obesity and diabetes in humans are associated with increased rates of anxiety and depression. To understand the role of the gut microbiome and brain insulin resistance in these disorders, we evaluated behaviors and insulin action in brain of mice with diet-induced obesity (DIO) with and without antibiotic treatment. We find that DIO mice have behaviors reflective of increased anxiety and depression. This is associated with decreased insulin signaling and increased inflammation in in the nucleus accumbens and amygdala. Treatment with oral metronidazole or vancomycin decreases inflammation, improves insulin signaling in the brain and reduces signs of anxiety and depression. These effects are associated with changes in the levels of tryptophan, GABA, BDNF, amino acids, and multiple acylcarnitines, and are transferable to germ-free mice by fecal transplant. Thus, changes in gut microbiota can control brain insulin signaling and metabolite levels, and this leads to altered neurobehaviors.


Regulation of Glucose Uptake and Enteroendocrine Function by the Intestinal Epithelial Insulin Receptor.

  • Siegfried Ussar‎ et al.
  • Diabetes‎
  • 2017‎

Insulin receptors (IRs) and IGF-I receptors (IGF-IR) are major regulators of metabolism and cell growth throughout the body; however, their roles in the intestine remain controversial. Here we show that genetic ablation of the IR or IGF-IR in intestinal epithelial cells of mice does not impair intestinal growth or development or the composition of the gut microbiome. However, the loss of IRs alters intestinal epithelial gene expression, especially in pathways related to glucose uptake and metabolism. More importantly, the loss of IRs reduces intestinal glucose uptake. As a result, mice lacking the IR in intestinal epithelium retain normal glucose tolerance during aging compared with controls, which show an age-dependent decline in glucose tolerance. Loss of the IR also results in a reduction of glucose-dependent insulinotropic polypeptide (GIP) expression from enteroendocrine K-cells and decreased GIP release in vivo after glucose ingestion but has no effect on glucagon-like peptide 1 expression or secretion. Thus, the IR in the intestinal epithelium plays important roles in intestinal gene expression, glucose uptake, and GIP production, which may contribute to pathophysiological changes in individuals with diabetes, metabolic syndrome, and other insulin-resistant states.


Hepatic deletion of p110α and p85α results in insulin resistance despite sustained IRS1-associated phosphatidylinositol kinase activity.

  • Aditi Chaudhari‎ et al.
  • F1000Research‎
  • 2017‎

Background: Class IA phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) is an integral mediator of insulin signaling. The p110 catalytic and p85 regulatory subunits of PI3K are the products of separate genes, and while they come together to make the active heterodimer, they have opposing roles in insulin signaling and action. Deletion of hepatic p110α results in an impaired insulin signal and severe insulin resistance, whereas deletion of hepatic p85α results in improved insulin sensitivity due to sustained levels of phosphatidylinositol (3,4,5)-trisphosphate. Here, we created mice with combined hepatic deletion of p110α and p85α (L-DKO) to study the impact on insulin signaling and whole body glucose homeostasis. Methods: Six-week old male flox control and L-DKO mice were studied over a period of 18 weeks, during which weight and glucose levels were monitored, and glucose tolerance tests, insulin tolerance test and pyruvate tolerance test were performed. Fasting insulin, insulin signaling mediators, PI3K activity and insulin receptor substrate (IRS)1-associated phosphatidylinositol kinase activity were examined at 10 weeks. Liver, muscle and white adipose tissue weight was recorded at 10 weeks and 25 weeks. Results: The L-DKO mice showed a blunted insulin signal downstream of PI3K, developed markedly impaired glucose tolerance, hyperinsulinemia and had decreased liver and adipose tissue weights. Surprisingly, however, these mice displayed normal hepatic glucose production, normal insulin tolerance, and intact IRS1-associated phosphatidylinositol kinase activity without compensatory upregulated signaling of other classes of PI3K. Conclusions: The data demonstrate an unexpectedly overall mild metabolic phenotype of the L-DKO mice, suggesting that lipid kinases other than PI3Ks might partially compensate for the loss of p110α/p85α by signaling through other nodes than Akt/Protein Kinase B.


Insulin receptor signaling in normal and insulin-resistant states.

  • Jérémie Boucher‎ et al.
  • Cold Spring Harbor perspectives in biology‎
  • 2014‎

In the wake of the worldwide increase in type-2 diabetes, a major focus of research is understanding the signaling pathways impacting this disease. Insulin signaling regulates glucose, lipid, and energy homeostasis, predominantly via action on liver, skeletal muscle, and adipose tissue. Precise modulation of this pathway is vital for adaption as the individual moves from the fed to the fasted state. The positive and negative modulators acting on different steps of the signaling pathway, as well as the diversity of protein isoform interaction, ensure a proper and coordinated biological response to insulin in different tissues. Whereas genetic mutations are causes of rare and severe insulin resistance, obesity can lead to insulin resistance through a variety of mechanisms. Understanding these pathways is essential for development of new drugs to treat diabetes, metabolic syndrome, and their complications.


Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications.

  • Cecile Vernochet‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2014‎

Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75-81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications.


Signal transducer and activator of transcription 3 and the phosphatidylinositol 3-kinase regulatory subunits p55α and p50α regulate autophagy in vivo.

  • Sara Pensa‎ et al.
  • The FEBS journal‎
  • 2014‎

Mammary gland involution involves a process that includes one of the most dramatic examples of cell death in an adult mammalian organism. We have previously shown that signal transducer and activator of transcription 3 (Stat3) regulates a lysosomal pathway of cell death in the first 48 h of involution and induces lysosome leakiness in mammary epithelial cells. Interestingly, Stat3 is associated also with the striking induction of autophagy that occurs concomitantly with cell death, presumably as a transient survival mechanism. The phosphatidylinositol 3-kinase regulatory subunits p55α and p50α are dramatically and specifically upregulated at the transcriptional level by Stat3 at the onset of involution. We show here that ablation of either Stat3 or p55α/p50α in vivo affects autophagy during involution. We used two different cell culture models (normal mammary epithelial cells and mouse embryonic fibroblasts) to further investigate the role of p55α/p50α in autophagy regulation. Our results demonstrate a direct role for p55α/p50α as inhibitors of autophagy mediated by p85α. Thus, Stat3 and its downstream targets p55α/p50α are key regulators of the balance between autophagy and cell death in vivo.


Role of PKCδ in Insulin Sensitivity and Skeletal Muscle Metabolism.

  • Mengyao Li‎ et al.
  • Diabetes‎
  • 2015‎

Protein kinase C (PKC)δ has been shown to be increased in liver in obesity and plays an important role in the development of hepatic insulin resistance in both mice and humans. In the current study, we explored the role of PKCδ in skeletal muscle in the control of insulin sensitivity and glucose metabolism by generating mice in which PKCδ was deleted specifically in muscle using Cre-lox recombination. Deletion of PKCδ in muscle improved insulin signaling in young mice, especially at low insulin doses; however, this did not change glucose tolerance or insulin tolerance tests done with pharmacological levels of insulin. Likewise, in young mice, muscle-specific deletion of PKCδ did not rescue high-fat diet-induced insulin resistance or glucose intolerance. However, with an increase in age, PKCδ levels in muscle increased, and by 6 to 7 months of age, muscle-specific deletion of PKCδ improved whole-body insulin sensitivity and muscle insulin resistance and by 15 months of age improved the age-related decline in whole-body glucose tolerance. At 15 months of age, M-PKCδKO mice also exhibited decreased metabolic rate and lower levels of some proteins of the OXPHOS complex suggesting a role for PKCδ in the regulation of mitochondrial mass at older age. These data indicate an important role of PKCδ in the regulation of insulin sensitivity and mitochondrial homeostasis in skeletal muscle with aging.


Reduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function.

  • Ryo Suzuki‎ et al.
  • PLoS biology‎
  • 2013‎

The sterol sensor SCAP is a key regulator of SREBP-2, the major transcription factor controlling cholesterol synthesis. Recently, we showed that there is a global down-regulation of cholesterol synthetic genes, as well as SREBP-2, in the brains of diabetic mice, leading to a reduction of cholesterol synthesis. We now show that in mouse models of type 1 and type 2 diabetes, this is, in part, the result of a decrease of SCAP. Homozygous disruption of the Scap gene in the brains of mice causes perinatal lethality associated with microcephaly and gliosis. Mice with haploinsufficiency of Scap in the brain show a 60% reduction of SCAP protein and ~30% reduction in brain cholesterol synthesis, similar to what is observed in diabetic mice. This results in impaired synaptic transmission, as measured by decreased paired pulse facilitation and long-term potentiation, and is associated with behavioral and cognitive changes. Thus, reduction of SCAP and the consequent suppression of cholesterol synthesis in the brain may play an important role in the increased rates of cognitive decline and Alzheimer disease observed in diabetic states.


Impaired thermogenesis and adipose tissue development in mice with fat-specific disruption of insulin and IGF-1 signalling.

  • Jeremie Boucher‎ et al.
  • Nature communications‎
  • 2012‎

Insulin and insulin-like growth factor 1 (IGF-1) have important roles in adipocyte differentiation, glucose tolerance and insulin sensitivity. Here to assess how these pathways can compensate for each other, we created mice with a double tissue-specific knockout of insulin and IGF-1 receptors to eliminate all insulin/IGF-1 signalling in fat. These FIGIRKO mice had markedly decreased white and brown fat mass and were completely resistant to high fat diet-induced obesity and age- and high fat diet-induced glucose intolerance. Energy expenditure was increased in FIGIRKO mice despite a >85% reduction in brown fat mass. However, FIGIRKO mice were unable to maintain body temperature when placed at 4 °C. Brown fat activity was markedly decreased in FIGIRKO mice but was responsive to β3-receptor stimulation. Thus, insulin/IGF-1 signalling has a crucial role in the control of brown and white fat development, and, when disrupted, leads to defective thermogenesis and a paradoxical increase in basal metabolic rate.


SHORT syndrome with partial lipodystrophy due to impaired phosphatidylinositol 3 kinase signaling.

  • Kishan Kumar Chudasama‎ et al.
  • American journal of human genetics‎
  • 2013‎

The phosphatidylinositol 3 kinase (PI3K) pathway regulates fundamental cellular processes such as metabolism, proliferation, and survival. A central component in this pathway is the p85α regulatory subunit, encoded by PIK3R1. Using whole-exome sequencing, we identified a heterozygous PIK3R1 mutation (c.1945C>T [p.Arg649Trp]) in two unrelated families affected by partial lipodystrophy, low body mass index, short stature, progeroid face, and Rieger anomaly (SHORT syndrome). This mutation led to impaired interaction between p85α and IRS-1 and reduced AKT-mediated insulin signaling in fibroblasts from affected subjects and in reconstituted Pik3r1-knockout preadipocytes. Normal PI3K activity is critical for adipose differentiation and insulin signaling; the mutated PIK3R1 therefore provides a unique link among lipodystrophy, growth, and insulin signaling.


A systems biology approach identifies inflammatory abnormalities between mouse strains prior to development of metabolic disease.

  • Marcelo A Mori‎ et al.
  • Diabetes‎
  • 2010‎

Type 2 diabetes and obesity are increasingly affecting human populations around the world. Our goal was to identify early molecular signatures predicting genetic risk to these metabolic diseases using two strains of mice that differ greatly in disease susceptibility.


Pancreatic function in carboxyl-ester lipase knockout mice.

  • Mette Vesterhus‎ et al.
  • Pancreatology : official journal of the International Association of Pancreatology (IAP) ... [et al.]‎
  • 2010‎

CEL-MODY is a monogenic form of diabetes and exocrine pancreatic insufficiency due to mutations in the carboxyl-ester lipase (CEL) gene. We aimed to investigate endocrine and exocrine pancreatic function in CEL knockout mice (CELKO).


Effects of diet and genetic background on sterol regulatory element-binding protein-1c, stearoyl-CoA desaturase 1, and the development of the metabolic syndrome.

  • Sudha B Biddinger‎ et al.
  • Diabetes‎
  • 2005‎

Both environmental and genetic factors play important roles in the development of the metabolic syndrome. To elucidate how these factors interact under normal conditions, C57Bl/6 (B6) and 129S6/SvEvTac (129) mice were placed on a low-fat or high-fat diet. Over 18 weeks, the 129 strain developed features of the metabolic syndrome, notably obesity, hyperinsulinemia, and glucose intolerance only on the high-fat diet; the B6 strain on the other hand developed these features on both diets. High-fat feeding of both strains led to decreased serum triglycerides, hepatic steatosis, and hypercholesterolemia; however, B6 mice developed worse steatosis and a larger increase in LDL cholesterol. Both B6 background and high-fat feeding increased sterol regulatory element-binding protein-1c (SREBP-1c), a key regulator of lipogenic gene transcription, and its downstream targets. Stearoyl-CoA desaturase 1 (SCD1), an enzyme that regulates monounsaturated fatty acid (MUFA) synthesis, was also increased at the mRNA and enzyme activity levels by both high-fat feeding and B6 background. Furthermore, lipid analysis revealed increased hepatic triglycerides and MUFAs in B6 and high-fat-fed mice. Thus, dietary fat and genetic background act through SREBP-1c and SCD1 to affect hepatic lipid metabolism contributing to the development of the metabolic syndrome.


Overexpression of Rad in muscle worsens diet-induced insulin resistance and glucose intolerance and lowers plasma triglyceride level.

  • Jacob Ilany‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2006‎

Rad is a low molecular weight GTPase that is overexpressed in skeletal muscle of some patients with type 2 diabetes mellitus and/or obesity. Overexpression of Rad in adipocytes and muscle cells in culture results in diminished insulin-stimulated glucose uptake. To further elucidate the potential role of Rad in vivo, we have generated transgenic (tg) mice that overexpress Rad in muscle using the muscle creatine kinase (MCK) promoter-enhancer. Rad tg mice have a 6- to 12-fold increase in Rad expression in muscle as compared to wild-type littermates. Rad tg mice grow normally and have normal glucose tolerance and insulin sensitivity, but have reduced plasma triglyceride levels. On a high-fat diet, Rad tg mice develop more severe glucose intolerance than the wild-type mice; this is due to increased insulin resistance in muscle, as exemplified by a rightward shift in the dose-response curve for insulin stimulated 2-deoxyglucose uptake. There is also a unexpected further reduction of the plasma triglyceride levels that is associated with increased levels of lipoprotein lipase in the Rad tg mice. These results demonstrate a potential synergistic interaction between increased expression of Rad and high-fat diet in creation of insulin resistance and altered lipid metabolism present in type 2 diabetes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: