2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 64 papers

Monitoring of Plant Protein Post-translational Modifications Using Targeted Proteomics.

  • Borjana Arsova‎ et al.
  • Frontiers in plant science‎
  • 2018‎

Protein post-translational modifications (PTMs) are among the fastest and earliest of plant responses to changes in the environment, making the mechanisms and dynamics of PTMs an important area of plant science. One of the most studied PTMs is protein phosphorylation. This review summarizes the use of targeted proteomics for the elucidation of the biological functioning of plant PTMs, and focuses primarily on phosphorylation. Since phosphorylated peptides have a low abundance, usually complex enrichment protocols are required for their research. Initial identification is usually performed with discovery phosphoproteomics, using high sensitivity mass spectrometers, where as many phosphopeptides are measured as possible. Once a PTM site is identified, biological characterization can be addressed with targeted proteomics. In targeted proteomics, Selected/Multiple Reaction Monitoring (S/MRM) is traditionally coupled to simple, standard protein digestion protocols, often omitting the enrichment step, and relying on triple-quadruple mass spectrometer. The use of synthetic peptides as internal standards allows accurate identification, avoiding cross-reactivity typical for some antibody based approaches. Importantly, internal standards allow absolute peptide quantitation, reported down to 0.1 femtomoles, also useful for determination of phospho-site occupancy. S/MRM is advantageous in situations where monitoring and diagnostics of peptide PTM status is needed for many samples, as it has faster sample processing times, higher throughput than other approaches, and excellent quantitation and reproducibility. Furthermore, the number of publicly available data-bases with plant PTM discovery data is growing, facilitating selection of modified peptides and design of targeted proteomics workflows. Recent instrument developments result in faster scanning times, inclusion of ion-trap instruments leading to parallel reaction monitoring- which further facilitates S/MRM experimental design. Finally, recent combination of data independent and data dependent spectra acquisition means that in addition to anticipated targeted data, spectra can now be queried for unanticipated information. The potential for future applications in plant biology is outlined.


Transcriptome sequencing and microarray design for functional genomics in the extremophile Arabidopsis relative Thellungiella salsuginea (Eutrema salsugineum).

  • Yang Ping Lee‎ et al.
  • BMC genomics‎
  • 2013‎

Most molecular studies of plant stress tolerance have been performed with Arabidopsis thaliana, although it is not particularly stress tolerant and may lack protective mechanisms required to survive extreme environmental conditions. Thellungiella salsuginea has attracted interest as an alternative plant model species with high tolerance of various abiotic stresses. While the T. salsuginea genome has recently been sequenced, its annotation is still incomplete and transcriptomic information is scarce. In addition, functional genomics investigations in this species are severely hampered by a lack of affordable tools for genome-wide gene expression studies.


quantGenius: implementation of a decision support system for qPCR-based gene quantification.

  • Špela Baebler‎ et al.
  • BMC bioinformatics‎
  • 2017‎

Quantitative molecular biology remains a challenge for researchers due to inconsistent approaches for control of errors in the final results. Due to several factors that can influence the final result, quantitative analysis and interpretation of qPCR data are still not trivial. Together with the development of high-throughput qPCR platforms, there is a need for a tool allowing for robust, reliable and fast nucleic acid quantification.


'Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine.

  • Matjaz Hren‎ et al.
  • BMC genomics‎
  • 2009‎

Phytoplasmas are bacteria without cell walls from the class Mollicutes. They are obligate intracellular plant pathogens which cause diseases in hundreds of economically important plants including the grapevine (Vitis vinifera). Knowledge of their biology and the mechanisms of their interactions with hosts is largely unknown because they are uncultivable and experimentally inaccessible in their hosts. We detail here the global transcriptional profiling in grapevine responses to phytoplasmas. The gene expression patterns were followed in leaf midribs of grapevine cv. 'Chardonnay' naturally infected with a phytoplasma from the stolbur group 16SrXII-A, which is associated with the grapevine yellows disease 'Bois noir'.


RNAseq analysis of α-proteobacterium Gluconobacter oxydans 621H.

  • Angela Kranz‎ et al.
  • BMC genomics‎
  • 2018‎

The acetic acid bacterium Gluconobacter oxydans 621H is characterized by its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. The metabolism of this α-proteobacterium has been characterized to some extent, yet little is known about its transcriptomes and related data. In this study, we applied two different RNAseq approaches. Primary transcriptomes enriched for 5'-ends of transcripts were sequenced to detect transcription start sites, which allow subsequent analysis of promoter motifs, ribosome binding sites, and 5´-UTRs. Whole transcriptomes were sequenced to identify expressed genes and operon structures.


Phosphate starvation causes different stress responses in the lipid metabolism of tomato leaves and roots.

  • Julia Pfaff‎ et al.
  • Biochimica et biophysica acta. Molecular and cell biology of lipids‎
  • 2020‎

Plants have evolved various acclimation responses to cope with phosphate depletion, including several changes in lipid metabolism. Thereby membrane phospholipids are dephosphorylated and can be used as an internal phosphate source, while galactolipids are incorporated into the membrane to maintain membrane functionality. Still little is known about the lipidomic and transcriptomic response of plants other than Arabidopsis thaliana upon phosphate starvation. Therefore, we employed lipidomics and transcriptomics to characterize the phosphate starvation response of lipid metabolism in tomato leaves and roots. Overall, phospholipid levels decreased and galactolipids increased during the acclimation response. In addition, an early increase of triacylglycerol was observed. Interestingly, there were major differences in the acclimation response of tomato leaves and roots: leaves mainly accumulated polyunsaturated triacylglycerol, while roots showed a massive increase in galactolipid content. In line with these results, we observed transcriptional induction of phospholipid degradation and galactolipid synthesis pathways in both analyzed tissues. In contrast, other aspects of the transcriptional response, in particular, the induction of phospholipid degradation, ER-localized fatty acid desaturation and triacylglycerol assembly differed between tomato leaves and roots. These results suggest a different modulation of degraded phospholipids toward triacylglycerols and galactolipids in phosphate-starved tomato leaves and roots. Possibly the availability and composition of acyl-CoA pools and ER-derived precursors trigger the synthesis of triacylglycerols or galactolipids. As the mechanism of triacylglycerol accumulation is poorly characterized outside of seed oil formation, these findings enhance our understanding of the phosphate starvation response and of how storage lipids accumulate under stress in vegetative tissue.


Genetic and molecular characterization of multicomponent resistance of Pseudomonas against allicin.

  • Jan Borlinghaus‎ et al.
  • Life science alliance‎
  • 2020‎

The common foodstuff garlic produces the potent antibiotic defense substance allicin after tissue damage. Allicin is a redox toxin that oxidizes glutathione and cellular proteins and makes garlic a highly hostile environment for non-adapted microbes. Genomic clones from a highly allicin-resistant Pseudomonas fluorescens (PfAR-1), which was isolated from garlic, conferred allicin resistance to Pseudomonas syringae and even to Escherichia coli Resistance-conferring genes had redox-related functions and were on core fragments from three similar genomic islands identified by sequencing and in silico analysis. Transposon mutagenesis and overexpression analyses revealed the contribution of individual candidate genes to allicin resistance. Taken together, our data define a multicomponent resistance mechanism against allicin in PfAR-1, achieved through horizontal gene transfer.


Tomato's Green Gold: Bioeconomy Potential of Residual Tomato Leaf Biomass as a Novel Source for the Secondary Metabolite Rutin.

  • Laura V Junker-Frohn‎ et al.
  • ACS omega‎
  • 2019‎

At the end of the annual horticultural production cycle of greenhouse-grown crops, large quantities of residual biomass are discarded. Here, we propose a new value chain to utilize horticultural leaf biomass for the extraction of secondary metabolites. To increase the secondary metabolite content of leaves, greenhouse-grown crop plants were exposed to low-cost abiotic stress treatments after the last fruit harvest. As proof of concept, we evaluated the production of the flavonoid rutin in tomato plants subjected to nitrogen deficiency. In an interdisciplinary approach, we observed the steady accumulation of rutin in young plants under nitrogen deficiency, tested the applicability of nitrogen deficiency in a commercial-like greenhouse, developed a high efficiency extraction for rutin, and evaluated the acceptance of the proposed value chain by its key actors economically. On the basis of the positive interdisciplinary evaluation, we identified opportunities and challenges for the successful establishment of horticultural leaf biomass as a novel source for secondary metabolites.


Oxford Nanopore sequencing: new opportunities for plant genomics?

  • Kathryn Dumschott‎ et al.
  • Journal of experimental botany‎
  • 2020‎

DNA sequencing was dominated by Sanger's chain termination method until the mid-2000s, when it was progressively supplanted by new sequencing technologies that can generate much larger quantities of data in a shorter time. At the forefront of these developments, long-read sequencing technologies (third-generation sequencing) can produce reads that are several kilobases in length. This greatly improves the accuracy of genome assemblies by spanning the highly repetitive segments that cause difficulty for second-generation short-read technologies. Third-generation sequencing is especially appealing for plant genomes, which can be extremely large with long stretches of highly repetitive DNA. Until recently, the low basecalling accuracy of third-generation technologies meant that accurate genome assembly required expensive, high-coverage sequencing followed by computational analysis to correct for errors. However, today's long-read technologies are more accurate and less expensive, making them the method of choice for the assembly of complex genomes. Oxford Nanopore Technologies (ONT), a third-generation platform for the sequencing of native DNA strands, is particularly suitable for the generation of high-quality assemblies of highly repetitive plant genomes. Here we discuss the benefits of ONT, especially for the plant science community, and describe the issues that remain to be addressed when using ONT for plant genome sequencing.


Genetic polyploid phasing from low-depth progeny samples.

  • Sven Schrinner‎ et al.
  • iScience‎
  • 2022‎

An important challenge in genome assembly is haplotype phasing, that is, to reconstruct the different haplotype sequences of an individual genome. Phasing becomes considerably more difficult with increasing ploidy, which makes polyploid phasing a notoriously hard computational problem. We present a novel genetic phasing method for plant breeding with the aim to phase two deep-sequenced parental samples with the help of a large number of progeny samples sequenced at low depth. The key ideas underlying our approach are to (i) integrate the individually weak Mendelian progeny signals with a Bayesian log-likelihood model, (ii) cluster alleles according to their likelihood of co-occurrence, and (iii) assign them to haplotypes via an interval scheduling approach. We show on two deep-sequenced parental and 193 low-depth progeny potato samples that our approach computes high-quality sparse phasings and that it scales to whole genomes.


Metabolomics and machine learning technique revealed that germination enhances the multi-nutritional properties of pigmented rice.

  • Rhowell Jr N Tiozon‎ et al.
  • Communications biology‎
  • 2023‎

Enhancing the dietary properties of rice is crucial to contribute to alleviating hidden hunger and non-communicable diseases in rice-consuming countries. Germination is a bioprocessing approach to increase the bioavailability of nutrients in rice. However, there is a scarce information on how germination impacts the overall nutritional profile of pigmented rice sprouts (PRS). Herein, we demonstrated that germination resulted to increase levels of certain dietary compounds, such as free phenolics and micronutrients (Ca, Na, Fe, Zn, riboflavin, and biotin). Metabolomic analysis revealed the preferential accumulation of dipeptides, GABA, and flavonoids in the germination process. Genome-wide association studies of the PRS suggested the activation of specific genes such as CHS1 and UGT genes responsible for increasing certain flavonoid compounds. Haplotype analyses showed a significant difference (P < 0.05) between alleles associated with these genes. Genetic markers associated with these flavonoids were incorporated into the random forest model, improving the accuracy of prediction of multi-nutritional properties from 89.7% to 97.7%. Deploying this knowledge to breed rice with multi-nutritional properties will be timely to address double burden nutritional challenges.


The FRIABLE1 gene product affects cell adhesion in Arabidopsis.

  • Lutz Neumetzler‎ et al.
  • PloS one‎
  • 2012‎

Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1), was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246). Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.


Insertion of a specific fungal 3'-phosphoadenosine-5'-phosphatase motif into a plant homologue improves halotolerance and drought tolerance of plants.

  • Meti Buh Gašparič‎ et al.
  • PloS one‎
  • 2013‎

Soil salinity and drought are among the most serious agricultural and environmental problems of today. Therefore, investigations of plant resistance to abiotic stress have received a lot of attention in recent years. In this study, we identified the complete coding sequence of a 3'-phosphoadenosine-5'-phosphatase protein, ApHal2, from the halotolerant yeast Aureobasidium pullulans. Expression of the ApHAL2 gene in a Saccharomyces cerevisiae hal2 mutant complemented the mutant auxotrophy for methionine, and rescued the growth of the hal2 mutant in media with high NaCl concentrations. A 21-amino-acids-long region of the ApHal2 enzyme was inserted into the Arabidopsis thaliana homologue of Hal2, the SAL1 phosphatase. The inserted sequence included the META motif, which has previously been implicated in increased sodium tolerance of the Hal2 homologue from a related fungal species. Transgenic Arabidopsis plants overexpressing this modified SAL1 (mSAL1) showed improved halotolerance and drought tolerance. In a medium with an elevated salt concentration, mSAL1-expressing plants were twice as likely to have roots in a higher length category in comparison with the wild-type Arabidopsis and with plants overexpressing the native SAL1, and had 5% to 10% larger leaf surface area under moderate and severe salt stress, respectively. Similarly, after moderate drought exposure, the mSAL1-expressing plants showed 14% increased dry weight after revitalisation, with no increase in dry weight of the wild-type plants. With severe drought, plants overexpressing native SAL1 had the worst rehydration success, consistent with the recently proposed role of SAL1 in severe drought. This was not observed for plants expressing mSAL1. Therefore, the presence of this fungal META motif sequence is beneficial under conditions of increased salinity and moderate drought, and shows no drawbacks for plant survival under severe drought. This demonstrates that adaptations of extremotolerant fungi should be considered as a valuable resource for improving stress-tolerance in plant breeding in the future.


De novo sequencing and analysis of the lily pollen transcriptome: an open access data source for an orphan plant species.

  • Veronika Lang‎ et al.
  • Plant molecular biology‎
  • 2015‎

Pollen grains of Lilium longiflorum are a long-established model system for pollen germination and tube tip growth. Due to their size, protein content and almost synchronous germination in synthetic media, they provide a simple system for physiological measurements as well as sufficient material for biochemical studies like protein purifications, enzyme assays, organelle isolation or determination of metabolites during germination and pollen tube elongation. Despite recent progresses in molecular biology techniques, sequence information of expressed proteins or transcripts in lily pollen is still scarce. Using a next generation sequencing strategy (RNAseq), the lily pollen transcriptome was investigated resulting in more than 50 million high quality reads with a length of 90 base pairs. Sequenced transcripts were assembled and annotated, and finally visualized with MAPMAN software tools and compared with other RNAseq or genome data including Arabidopsis pollen, Lilium vegetative tissues and the Amborella trichopoda genome. All lily pollen sequence data are provided as open access files with suitable tools to search sequences of interest.


Expression analysis of all protease genes reveals cathepsin K to be overexpressed in glioblastoma.

  • Urška Verbovšek‎ et al.
  • PloS one‎
  • 2014‎

Cancer genome and transcriptome analyses advanced our understanding of cancer biology. We performed transcriptome analysis of all known genes of peptidases also called proteases and their endogenous inhibitors in glioblastoma multiforme (GBM), which is one of the most aggressive and deadly types of brain cancers, where unbalanced proteolysis is associated with tumor progression.


Early metabolic and transcriptional variations in fruit of natural white-fruited Fragaria vesca genotypes.

  • Katja Härtl‎ et al.
  • Scientific reports‎
  • 2017‎

Strawberry fruits (Fragaria vesca) are valued for their sweet fruity flavor, juicy texture, and characteristic red color caused by anthocyanin pigments. To gain a deeper insight into the regulation of anthocyanin biosynthesis, we performed comparative metabolite profiling and transcriptome analyses of one red-fruited and two natural white-fruited strawberry varieties in two tissues and three ripening stages. Developing fruit of the three genotypes showed a distinctive pattern of polyphenol accumulation already in green receptacle and achenes. Global analysis of the transcriptomes revealed that the ripening process in the white-fruited varieties is already affected at an early developmental stage. Key polyphenol genes showed considerably lower transcript levels in the receptacle and achenes of both white genotypes, compared to the red genotype. The expression of the anthocyanidin glucosyltransferase gene and a glutathione S-transferase, putatively involved in the vacuolar transport of the anthocyanins, seemed to be critical for anthocyanin formation. A bHLH transcription factor is among the differentially expressed genes as well. Furthermore, genes associated with flavor formation and fruit softening appear to be coordinately regulated and seem to interact with the polyphenol biosynthesis pathway. This study provides new information about polyphenol biosynthesis regulators in strawberry, and reveals genes unknown to affect anthocyanin formation.


Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris.

  • Alexander Vogel‎ et al.
  • Nature communications‎
  • 2018‎

A parasitic lifestyle, where plants procure some or all of their nutrients from other living plants, has evolved independently in many dicotyledonous plant families and is a major threat for agriculture globally. Nevertheless, no genome sequence of a parasitic plant has been reported to date. Here we describe the genome sequence of the parasitic field dodder, Cuscuta campestris. The genome contains signatures of a fairly recent whole-genome duplication and lacks genes for pathways superfluous to a parasitic lifestyle. Specifically, genes needed for high photosynthetic activity are lost, explaining the low photosynthesis rates displayed by the parasite. Moreover, several genes involved in nutrient uptake processes from the soil are lost. On the other hand, evidence for horizontal gene transfer by way of genomic DNA integration from the parasite's hosts is found. We conclude that the parasitic lifestyle has left characteristic footprints in the C. campestris genome.


The SEQanswers wiki: a wiki database of tools for high-throughput sequencing analysis.

  • Jing-Woei Li‎ et al.
  • Nucleic acids research‎
  • 2012‎

Recent advances in sequencing technology have created unprecedented opportunities for biological research. However, the increasing throughput of these technologies has created many challenges for data management and analysis. As the demand for sophisticated analyses increases, the development time of software and algorithms is outpacing the speed of traditional publication. As technologies continue to be developed, methods change rapidly, making publications less relevant for users. The SEQanswers wiki (SEQwiki) is a wiki database that is actively edited and updated by the members of the SEQanswers community (http://SEQanswers.com/). The wiki provides an extensive catalogue of tools, technologies and tutorials for high-throughput sequencing (HTS), including information about HTS service providers. It has been implemented in MediaWiki with the Semantic MediaWiki and Semantic Forms extensions to collect structured data, providing powerful navigation and reporting features. Within 2 years, the community has created pages for over 500 tools, with approximately 400 literature references and 600 web links. This collaborative effort has made SEQwiki the most comprehensive database of HTS tools anywhere on the web. The wiki includes task-focused mini-reviews of commonly used tools, and a growing collection of more than 100 HTS service providers. SEQwiki is available at: http://wiki.SEQanswers.com/.


The plant growth promoting substance, lumichrome, mimics starch, and ethylene-associated symbiotic responses in lotus and tomato roots.

  • Liezel M Gouws‎ et al.
  • Frontiers in plant science‎
  • 2012‎

Symbiosis involves responses that maintain the plant host and symbiotic partner's genetic program; yet these cues are far from elucidated. Here we describe the effects of lumichrome, a flavin identified from Rhizobium spp., applied to lotus (Lotus japonicus) and tomato (Solanum lycopersicum). Combined transcriptional and metabolite analyses suggest that both species shared common pathways that were altered in response to this application under replete, sterile conditions. These included genes involved in symbiosis, as well as transcriptional and metabolic responses related to enhanced starch accumulation and altered ethylene metabolism. Lumichrome priming also resulted in altered colonization with either Mesorhizobium loti (for lotus) or Glomus intraradices/G. mossea (for tomato). It enhanced nodule number but not nodule formation in lotus; while leading to enhanced hyphae initiation and delayed arbuscule maturation in tomato.


CCR5-Mediated Signaling Is Involved in Invasion of Glioblastoma Cells in Its Microenvironment.

  • Metka Novak‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The chemokine CCL5/RANTES is a versatile inflammatory mediator, which interacts with the receptor CCR5, promoting cancer cell interactions within the tumor microenvironment. Glioblastoma is a highly invasive tumor, in which CCL5 expression correlates with shorter patient survival. Using immunohistochemistry, we identified CCL5 and CCR5 in a series of glioblastoma samples and cells, including glioblastoma stem cells. CCL5 and CCR5 gene expression were significantly higher in a cohort of 38 glioblastoma samples, compared to low-grade glioma and non-cancerous tissues. The in vitro invasion of patients-derived primary glioblastoma cells and glioblastoma stem cells was dependent on CCL5-induced CCR5 signaling and is strongly inhibited by the small molecule CCR5 antagonist maraviroc. Invasion of these cells, which was enhanced when co-cultured with mesenchymal stem cells (MSCs), was inhibited by maraviroc, suggesting that MSCs release CCR5 ligands. In support of this model, we detected CCL5 and CCR5 in MSC monocultures and glioblastoma-associated MSC in tissue sections. We also found CCR5 expressing macrophages were in close proximity to glioblastoma cells. In conclusion, autocrine and paracrine cross-talk in glioblastoma and, in particular, glioblastoma stem cells with its stromal microenvironment, involves CCR5 and CCL5, contributing to glioblastoma invasion, suggesting the CCL5/CCR5 axis as a potential therapeutic target that can be targeted with repositioned drug maraviroc.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: