Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin.

  • Miho Noguchi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2006‎

In order to investigate the mechanism of radio-sensitization by an Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), we studied repair of DNA double strand breaks (DSBs) in irradiated human cells pre-treated with 17-AAG. DSBs are thought to be the critical target for radiation-induced cell death. Two human tumor cell lines DU145 and SQ-5 which showed clear radio-sensitization by 17-AAG revealed a significant inhibition of DSB repair, while normal human cells which did not show radio-sensitization by the drug indicated no change in the DSB repair kinetics with 17-AAG. We further demonstrated that BRCA2 was a novel client protein for Hsp90, and 17-AAG caused the degradation of BRCA2 and in turn altered the behavior of Rad51, a critical protein for homologous recombination (HR) pathway of DSB repair. Our data demonstrate for the first time that 17-AAG inhibits the HR repair process and could provide a new therapeutic strategy to selectively result in higher tumor cell killing.


The combination of Hsp90 inhibitor 17AAG and heavy-ion irradiation provides effective tumor control in human lung cancer cells.

  • Hirokazu Hirakawa‎ et al.
  • Cancer medicine‎
  • 2015‎

Hsp90 inhibitors have become well-studied antitumor agents for their selective property against tumors versus normal cells. The combined treatment of Hsp90 inhibitor and conventional photon radiation also showed more effective tumor growth delay than radiation alone. However, little is known regarding the combined treatment of Hsp90 inhibitor and heavy-ion irradiation. In this study, SQ5 human lung tumor cells were used in vitro for clonogenic cell survival and in vivo for tumor growth delay measurement using a mouse xenograft model after 17-allylamino-17-demethoxygeldanamycin (17AAG) pretreatment and carbon ion irradiation. Repair of DNA double strand breaks (DSBs) was also assessed along with expressions of DSB repair-related proteins. Cell cycle analysis after the combined treatment was also performed. The combined treatment of 17AAG and carbon ions revealed a promising treatment option in both in vitro and in vivo studies. One likely cause of this effectiveness was shown to be the inhibition of homologous recombination repair by 17AAG. The more intensified G2 cell cycle delay was also associated with the combined treatment when compared with carbon ion treatment alone. Our findings indicate that the combination of Hsp90 inhibition and heavy-ion irradiation provides a new effective therapeutic alternative for treatment of solid tumors.


Mitochondrial Metabolism in X-Irradiated Cells Undergoing Irreversible Cell-Cycle Arrest.

  • Eri Hirose‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Irreversible cell-cycle-arrested cells not undergoing cell divisions have been thought to be metabolically less active because of the unnecessary consumption of energy for cell division. On the other hand, they might be actively involved in the tissue microenvironment through an inflammatory response. In this study, we examined the mitochondria-dependent metabolism in human cells irreversibly arrested in response to ionizing radiation to confirm this possibility. Human primary WI-38 fibroblast cells and the BJ-5ta fibroblast-like cell line were exposed to 20 Gy X-rays and cultured for up to 9 days after irradiation. The mitochondrial morphology and membrane potential were evaluated in the cells using the mitochondrial-specific fluorescent reagents MitoTracker Green (MTG) and 5,5',6,6'-tetraethyl-benzimidazolylcarbocyanine iodide (JC-1), respectively. The ratio of the mean MTG-stained total mitochondrial area per unit cell area decreased for up to 9 days after X-irradiation. The fraction of the high mitochondrial membrane potential area visualized by JC-1 staining reached its minimum 2 days after irradiation and then increased (particularly, WI-38 cells increased 1.8-fold the value of the control). Their chronological changes indicate that the mitochondrial volume in the irreversible cell-cycle-arrested cells showed significant increase concurrently with cellular volume expansion, indicating that the mitochondria-dependent energy metabolism was still active. These results indicate that the energy metabolism in X-ray-induced senescent-like cells is active compared to nonirradiated normal cells, even though they do not undergo cell divisions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: