Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Controlling automatic imitative tendencies: interactions between mirror neuron and cognitive control systems.

  • Katy A Cross‎ et al.
  • NeuroImage‎
  • 2013‎

Humans have an automatic tendency to imitate others. Although several regions commonly observed in social tasks have been shown to be involved in imitation control, there is little work exploring how these regions interact with one another. We used fMRI and dynamic causal modeling to identify imitation-specific control mechanisms and examine functional interactions between regions. Participants performed a pre-specified action (lifting their index or middle finger) in response to videos depicting the same two actions (biological cues) or dots moving with similar trajectories (non-biological cues). On congruent trials, the stimulus and response were similar (e.g. index finger response to index finger or left side dot stimulus), while on incongruent trials the stimulus and response were dissimilar (e.g. index finger response to middle finger or right side dot stimulus). Reaction times were slower on incongruent compared to congruent trials for both biological and non-biological stimuli, replicating previous findings that suggest the automatic imitative or spatially compatible (congruent) response must be controlled on incongruent trials. Neural correlates of the congruency effects were different depending on the cue type. The medial prefrontal cortex, anterior cingulate, inferior frontal gyrus pars opercularis (IFGpo) and the left anterior insula were involved specifically in controlling imitation. In addition, the IFGpo was also more active for biological compared to non-biological stimuli, suggesting that the region represents the frontal node of the human mirror neuron system (MNS). Effective connectivity analysis exploring the interactions between these regions, suggests a role for the mPFC and ACC in imitative conflict detection and the anterior insula in conflict resolution processes, which may occur through interactions with the frontal node of the MNS. We suggest an extension of the previous models of imitation control involving interactions between imitation-specific and general cognitive control mechanisms.


A multistudy analysis reveals that evoked pain intensity representation is distributed across brain systems.

  • Bogdan Petre‎ et al.
  • PLoS biology‎
  • 2022‎

Information is coded in the brain at multiple anatomical scales: locally, distributed across regions and networks, and globally. For pain, the scale of representation has not been formally tested, and quantitative comparisons of pain representations across regions and networks are lacking. In this multistudy analysis of 376 participants across 11 studies, we compared multivariate predictive models to investigate the spatial scale and location of evoked heat pain intensity representation. We compared models based on (a) a single most pain-predictive region or resting-state network; (b) pain-associated cortical-subcortical systems developed from prior literature ("multisystem models"); and (c) a model spanning the full brain. We estimated model accuracy using leave-one-study-out cross-validation (CV; 7 studies) and subsequently validated in 4 independent holdout studies. All spatial scales conveyed information about pain intensity, but distributed, multisystem models predicted pain 20% more accurately than any individual region or network and were more generalizable to multimodal pain (thermal, visceral, and mechanical) and specific to pain. Full brain models showed no predictive advantage over multisystem models. These findings show that multiple cortical and subcortical systems are needed to decode pain intensity, especially heat pain, and that representation of pain experience may not be circumscribed by any elementary region or canonical network. Finally, the learner generalization methods we employ provide a blueprint for evaluating the spatial scale of information in other domains.


Left hemisphere specialization for oro-facial movements of learned vocal signals by captive chimpanzees.

  • Elizabeth A Reynolds Losin‎ et al.
  • PloS one‎
  • 2008‎

The left hemisphere of the human brain is dominant in the production of speech and signed language. Whether similar lateralization of function for communicative signal production is present in other primates remains a topic of considerable debate. In the current study, we examined whether oro-facial movements associated with the production of learned attention-getting sounds are differentially lateralized compared to facial expressions associated with the production of species-typical emotional vocalizations in chimpanzees.


Modeling neural and self-reported factors of affective distress in the relationship between pain and working memory in healthy individuals.

  • Steven R Anderson‎ et al.
  • Neuropsychologia‎
  • 2021‎

The relationship between pain and cognition has primarily been investigated in patients with chronic pain and healthy participants undergoing experimental pain. Recently, there has been interest in understanding the disruptive effects of non-experimental pain in otherwise healthy individuals. Recent studies suggest that healthy individuals reporting pain also demonstrate decrements in working memory (WM) performance, however factors contributing to this relationship remain poorly understood. The present study examined the association between pain and WM in a large community-based sample of healthy individuals and investigated whether self-reported affective distress and medial frontal cortex activity might help to explain this relationship. To address these research questions, a large publicly available dataset from the Human Connectome Project (N = 416) was sourced and structural equation modeling was utilized to examine relationships between pain intensity experienced over the past 7 days, self-reported affective distress, performance on a WM (n-back) task, and task-related activation in the medial frontal cortex. Examining participants who reported non-zero pain intensity in the past 7 days (n = 228), we found a direct negative association between pain intensity and performance on the WM n-back task, consistent with prior findings. Self-reported affective distress was not associated with WM performance. Additionally, pain intensity was indirectly associated with WM performance via WM task-related activity in the ventromedial prefrontal cortex (vmPFC). Our findings suggest that pain experienced in everyday life by otherwise healthy individuals may directly impact WM performance. Furthermore, WM task-related increases in vmPFC activity may be a factor contributing to this relationship.


Neural processing of race during imitation: self-similarity versus social status.

  • Elizabeth A Reynolds Losin‎ et al.
  • Human brain mapping‎
  • 2014‎

People preferentially imitate others who are similar to them or have high social status. Such imitative biases are thought to have evolved because they increase the efficiency of cultural acquisition. Here we focused on distinguishing between self-similarity and social status as two candidate mechanisms underlying neural responses to a person's race during imitation. We used fMRI to measure neural responses when 20 African American (AA) and 20 European American (EA) young adults imitated AA, EA and Chinese American (CA) models and also passively observed their gestures and faces. We found that both AA and EA participants exhibited more activity in lateral frontoparietal and visual regions when imitating AAs compared with EAs or CAs. These results suggest that racial self-similarity is not likely to modulate neural responses to race during imitation, in contrast with findings from previous neuroimaging studies of face perception and action observation. Furthermore, AA and EA participants associated AAs with lower social status than EAs or CAs, suggesting that the social status associated with different racial groups may instead modulate neural activity during imitation of individuals from those groups. Taken together, these findings suggest that neural responses to race during imitation are driven by socially learned associations rather than self-similarity. This may reflect the adaptive role of imitation in social learning, where learning from higher status models can be more beneficial. This study provides neural evidence consistent with evolutionary theories of cultural acquisition.


Race modulates neural activity during imitation.

  • Elizabeth A Reynolds Losin‎ et al.
  • NeuroImage‎
  • 2012‎

Imitation plays a central role in the acquisition of culture. People preferentially imitate others who are self-similar, prestigious or successful. Because race can indicate a person's self-similarity or status, race influences whom people imitate. Prior studies of the neural underpinnings of imitation have not considered the effects of race. Here we measured neural activity with fMRI while European American participants imitated meaningless gestures performed by actors of their own race, and two racial outgroups, African American, and Chinese American. Participants also passively observed the actions of these actors and their portraits. Frontal, parietal and occipital areas were differentially activated while participants imitated actors of different races. More activity was present when imitating African Americans than the other racial groups, perhaps reflecting participants' reported lack of experience with and negative attitudes towards this group, or the group's lower perceived social status. This pattern of neural activity was not found when participants passively observed the gestures of the actors or simply looked at their faces. Instead, during face-viewing neural responses were overall greater for own-race individuals, consistent with prior race perception studies not involving imitation. Our findings represent a first step in elucidating neural mechanisms involved in cultural learning, a process that influences almost every aspect of our lives but has thus far received little neuroscientific study.


A dorsomedial prefrontal cortex-based dynamic functional connectivity model of rumination.

  • Jungwoo Kim‎ et al.
  • Nature communications‎
  • 2023‎

Rumination is a cognitive style characterized by repetitive thoughts about one's negative internal states and is a common symptom of depression. Previous studies have linked trait rumination to alterations in the default mode network, but predictive brain markers of rumination are lacking. Here, we adopt a predictive modeling approach to develop a neuroimaging marker of rumination based on the variance of dynamic resting-state functional connectivity and test it across 5 diverse subclinical and clinical samples (total n = 288). A whole-brain marker based on dynamic connectivity with the dorsomedial prefrontal cortex (dmPFC) emerges as generalizable across the subclinical datasets. A refined marker consisting of the most important features from a virtual lesion analysis further predicts depression scores of adults with major depressive disorder (n = 35). This study highlights the role of the dmPFC in trait rumination and provides a dynamic functional connectivity marker for rumination.


Group-regularized individual prediction: theory and application to pain.

  • Martin A Lindquist‎ et al.
  • NeuroImage‎
  • 2017‎

Multivariate pattern analysis (MVPA) has become an important tool for identifying brain representations of psychological processes and clinical outcomes using fMRI and related methods. Such methods can be used to predict or 'decode' psychological states in individual subjects. Single-subject MVPA approaches, however, are limited by the amount and quality of individual-subject data. In spite of higher spatial resolution, predictive accuracy from single-subject data often does not exceed what can be accomplished using coarser, group-level maps, because single-subject patterns are trained on limited amounts of often-noisy data. Here, we present a method that combines population-level priors, in the form of biomarker patterns developed on prior samples, with single-subject MVPA maps to improve single-subject prediction. Theoretical results and simulations motivate a weighting based on the relative variances of biomarker-based prediction-based on population-level predictive maps from prior groups-and individual-subject, cross-validated prediction. Empirical results predicting pain using brain activity on a trial-by-trial basis (single-trial prediction) across 6 studies (N=180 participants) confirm the theoretical predictions. Regularization based on a population-level biomarker-in this case, the Neurologic Pain Signature (NPS)-improved single-subject prediction accuracy compared with idiographic maps based on the individuals' data alone. The regularization scheme that we propose, which we term group-regularized individual prediction (GRIP), can be applied broadly to within-person MVPA-based prediction. We also show how GRIP can be used to evaluate data quality and provide benchmarks for the appropriateness of population-level maps like the NPS for a given individual or study.


Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex.

  • Philip A Kragel‎ et al.
  • Nature neuroscience‎
  • 2018‎

The medial frontal cortex, including anterior midcingulate cortex, has been linked to multiple psychological domains, including cognitive control, pain, and emotion. However, it is unclear whether this region encodes representations of these domains that are generalizable across studies and subdomains. Additionally, if there are generalizable representations, do they reflect a single underlying process shared across domains or multiple domain-specific processes? We decomposed multivariate patterns of functional MRI activity from 270 participants across 18 studies into study-specific, subdomain-specific, and domain-specific components and identified latent multivariate representations that generalized across subdomains but were specific to each domain. Pain representations were localized to anterior midcingulate cortex, negative emotion representations to ventromedial prefrontal cortex, and cognitive control representations to portions of the dorsal midcingulate. These findings provide evidence for medial frontal cortex representations that generalize across studies and subdomains but are specific to distinct psychological domains rather than reducible to a single underlying process.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: