2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Genetic classification of populations using supervised learning.

  • Michael Bridges‎ et al.
  • PloS one‎
  • 2011‎

There are many instances in genetics in which we wish to determine whether two candidate populations are distinguishable on the basis of their genetic structure. Examples include populations which are geographically separated, case-control studies and quality control (when participants in a study have been genotyped at different laboratories). This latter application is of particular importance in the era of large scale genome wide association studies, when collections of individuals genotyped at different locations are being merged to provide increased power. The traditional method for detecting structure within a population is some form of exploratory technique such as principal components analysis. Such methods, which do not utilise our prior knowledge of the membership of the candidate populations. are termed unsupervised. Supervised methods, on the other hand are able to utilise this prior knowledge when it is available.In this paper we demonstrate that in such cases modern supervised approaches are a more appropriate tool for detecting genetic differences between populations. We apply two such methods, (neural networks and support vector machines) to the classification of three populations (two from Scotland and one from Bulgaria). The sensitivity exhibited by both these methods is considerably higher than that attained by principal components analysis and in fact comfortably exceeds a recently conjectured theoretical limit on the sensitivity of unsupervised methods. In particular, our methods can distinguish between the two Scottish populations, where principal components analysis cannot. We suggest, on the basis of our results that a supervised learning approach should be the method of choice when classifying individuals into pre-defined populations, particularly in quality control for large scale genome wide association studies.


Gaining Insights into Aggressive Behaviour in Autism Spectrum Disorder Using Latent Profile Analysis.

  • Matthew O Sullivan‎ et al.
  • Journal of autism and developmental disorders‎
  • 2019‎

Aggressive behaviour is a significant issue for individuals with autism spectrum disorder (ASD), yet our understanding is limited compared to aggression in typically developing populations. This study examined behavioural, adaptive and cognitive data provided by the Simons Simplex Collection (N = 2184) to identify behavioural subgroups in children and adolescents with ASD using latent profile analysis. Results showed five subgroups that differed with regards to behavioural severity, IQ and adaptive behaviour. In two profiles with higher aggression, individuals had greater comorbid anxiety symptoms and attentional deficits and also differed in adaptive behaviour and IQ. These results identify potentially important avenues for research in aggressive behaviour in ASD.


A genome-wide scan for common alleles affecting risk for autism.

  • Richard Anney‎ et al.
  • Human molecular genetics‎
  • 2010‎

Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10(-8). When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10(-8) threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C.


Individual common variants exert weak effects on the risk for autism spectrum disorders.

  • Richard Anney‎ et al.
  • Human molecular genetics‎
  • 2012‎

While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASDs), the contribution of common variation to the risk of developing ASD is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating the association of individual single nucleotide polymorphisms (SNPs), we also sought evidence that common variants, en masse, might affect the risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest P-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. In contrast, allele scores derived from the transmission of common alleles to Stage 1 cases significantly predict case status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele score results, it is reasonable to conclude that common variants affect the risk for ASD but their individual effects are modest.


Evidence of Assortative Mating in Autism Spectrum Disorder.

  • Siobhan Connolly‎ et al.
  • Biological psychiatry‎
  • 2019‎

Assortative mating is a nonrandom mating system in which individuals with similar genotypes and/or phenotypes mate with one another more frequently than would be expected in a random mating system. Assortative mating has been hypothesized to play a role in autism spectrum disorder (ASD) in an attempt to explain some of the increase in the prevalence of ASD that has recently been observed. ASD is considered to be a heritable neurodevelopmental disorder, but there is limited understanding of its causes. Assortative mating can be explored through both phenotypic and genotypic data, but up until now it has never been investigated through genotypic measures in ASD.


Converting single nucleotide variants between genome builds: from cautionary tale to solution.

  • Cathal Ormond‎ et al.
  • Briefings in bioinformatics‎
  • 2021‎

Next-generation sequencing studies are dependent on a high-quality reference genome for single nucleotide variant (SNV) calling. Although the two most recent builds of the human genome are widely used, position information is typically not directly comparable between them. Re-alignment gives the most accurate position information, but this procedure is often computationally expensive, and therefore, tools such as liftOver and CrossMap are used to convert data from one build to another. However, the positions of converted SNVs do not always match SNVs derived from aligned data, and in some instances, SNVs are known to change chromosome when converted. This is a significant problem when compiling sequencing resources or comparing results across studies. Here, we describe a novel algorithm to identify positions that are unstable when converting between human genome reference builds. These positions are detected independent of the conversion tools and are determined by the chain files, which provide a mapping of contiguous positions from one build to another. We also provide the list of unstable positions for converting between the two most commonly used builds GRCh37 and GRCh38. Pre-excluding SNVs at these positions, prior to conversion, results in SNVs that are stable to conversion. This simple procedure gives the same final list of stable SNVs as applying the algorithm and subsequently removing variants at unstable positions. This work highlights the care that must be taken when converting SNVs between genome builds and provides a simple method for ensuring higher confidence converted data. Unstable positions and algorithm code, available at https://github.com/cathaloruaidh/genomeBuildConversion.


Gender bias in academic medicine: a resumé study.

  • Elaine Burke‎ et al.
  • BMC medical education‎
  • 2023‎

Minimising the effects of unconscious bias in selection for clinical academic training is essential to ensure that allocation of training posts is based on merit. We looked at the effect of anonymising applications to a training programme for junior doctors on the scores of the applications and on gender balance; and whether female candidates were more likely to seek gender-concordant mentors.


Ultrarare Missense Variants Implicated in Utah Pedigrees Multiply Affected With Schizophrenia.

  • Cathal Ormond‎ et al.
  • Biological psychiatry global open science‎
  • 2023‎

Recent work from the Schizophrenia Exome Sequencing Meta-analysis (SCHEMA) consortium showed significant enrichment of ultrarare variants in schizophrenia cases. Family-based studies offer a unique opportunity to evaluate rare variants because risk in multiplex pedigrees is more likely to be influenced by the same collection of variants than an unrelated cohort.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: