Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 272 papers

Cryo-electron Microscopy Structures of Chimeric Hemagglutinin Displayed on a Universal Influenza Vaccine Candidate.

  • Erin E H Tran‎ et al.
  • mBio‎
  • 2016‎

Influenza viruses expressing chimeric hemagglutinins (HAs) are important tools in the quest for a universal vaccine. Using cryo-electron tomography, we have determined the structures of a chimeric HA variant that comprises an H1 stalk and an H5 globular head domain (cH5/1 HA) in native and antibody-bound states. We show that cH5/1 HA is structurally different from native HA, displaying a 60° rotation between the stalk and head groups, leading to a novel and unexpected "open" arrangement of HA trimers. cH5/1N1 viruses also display higher glycoprotein density than pH1N1 or H5N1 viruses, but despite these differences, antibodies that target either the stalk or head domains of hemagglutinins still bind to cH5/1 HA with the same consequences as those observed with native H1 or H5 HA. Our results show that a large range of structural plasticity can be tolerated in the chimeric spike scaffold without disrupting structural and geometric aspects of antibody binding.


A Numerically Subdominant CD8 T Cell Response to Matrix Protein of Respiratory Syncytial Virus Controls Infection with Limited Immunopathology.

  • Jie Liu‎ et al.
  • PLoS pathogens‎
  • 2016‎

CD8 T cells are involved in pathogen clearance and infection-induced pathology in respiratory syncytial virus (RSV) infection. Studying bulk responses masks the contribution of individual CD8 T cell subsets to protective immunity and immunopathology. In particular, the roles of subdominant responses that are potentially beneficial to the host are rarely appreciated when the focus is on magnitude instead of quality of response. Here, by evaluating CD8 T cell responses in CB6F1 hybrid mice, in which multiple epitopes are recognized, we found that a numerically subdominant CD8 T cell response against DbM187 epitope of the virus matrix protein expressed high avidity TCR and enhanced signaling pathways associated with CD8 T cell effector functions. Each DbM187 T effector cell lysed more infected targets on a per cell basis than the numerically dominant KdM282 T cells, and controlled virus replication more efficiently with less pulmonary inflammation and illness than the previously well-characterized KdM282 T cell response. Our data suggest that the clinical outcome of viral infections is determined by the integrated functional properties of a variety of responding CD8 T cells, and that the highest magnitude response may not necessarily be the best in terms of benefit to the host. Understanding how to induce highly efficient and functional T cells would inform strategies for designing vaccines intended to provide T cell-mediated immunity.


BCL6 orchestrates Tfh cell differentiation via multiple distinct mechanisms.

  • Katerina Hatzi‎ et al.
  • The Journal of experimental medicine‎
  • 2015‎

Follicular helper T cells (Tfh cells) are required for T cell help to B cells, and BCL6 is the defining transcription factor of Tfh cells. However, the functions of BCL6 in Tfh cells have largely remained unclear. Here we defined the BCL6 cistrome in primary human germinal center Tfh cells to assess mechanisms of BCL6 regulation of CD4 T cells, comparing and contrasting BCL6 function in T and B cells. BCL6 primarily acts as a repressor in Tfh cells, and BCL6 binding was associated with control of Tfh cell migration and repression of alternative cell fates. Interestingly, although some BCL6-bound genes possessed BCL6 DNA-binding motifs, many BCL6-bound loci were instead characterized by the presence of DNA motifs for AP1 or STAT. AP1 complexes are key positive downstream mediators of TCR signaling and external stimuli. We show that BCL6 can directly bind AP1, and BCL6 depends on AP1 for recruitment to BCL6-binding sites with AP1 motifs, suggesting that BCL6 subverts AP1 activity. These findings reveal that BCL6 has broad and multifaceted effects on Tfh biology and provide insight into how this master regulator mediates distinct cell context-dependent phenotypes.


High Affinity Antibodies against Influenza Characterize the Plasmablast Response in SLE Patients After Vaccination.

  • Kaval Kaur‎ et al.
  • PloS one‎
  • 2015‎

Breakdown of B cell tolerance is a cardinal feature of systemic lupus erythematosus (SLE). Increased numbers of autoreactive mature naïve B cells have been described in SLE patients and autoantibodies have been shown to arise from autoreactive and non-autoreactive precursors. How these defects, in the regulation of B cell tolerance and selection, influence germinal center (GC) reactions that are directed towards foreign antigens has yet to be investigated. Here, we examined the characteristics of post-GC foreign antigen-specific B cells from SLE patients and healthy controls by analyzing monoclonal antibodies generated from plasmablasts induced specifically by influenza vaccination. We report that many of the SLE patients had anti-influenza antibodies with higher binding affinity and neutralization capacity than those from controls. Although overall frequencies of autoreactivity in the influenza-specific plasmablasts were similar for SLE patients and controls, the variable gene repertoire of influenza-specific plasmablasts from SLE patients was altered, with increased usage of JH6 and long heavy chain CDR3 segments. We found that high affinity anti-influenza antibodies generally characterize the plasmablast responses of SLE patients with low levels of autoreactivity; however, certain exceptions were noted. The high-avidity antibody responses in SLE patients may also be correlated with cytokines that are abnormally expressed in lupus. These findings provide insights into the effects of dysregulated immunity on the quality of antibody responses following influenza vaccination and further our understanding of the underlying abnormalities of lupus.


Protein Microarray Analysis of the Specificity and Cross-Reactivity of Influenza Virus Hemagglutinin-Specific Antibodies.

  • Rie Nakajima‎ et al.
  • mSphere‎
  • 2018‎

Current seasonal influenza virus vaccines engender antibody-mediated protection that is hemagglutinin (HA) subtype specific and relatively short-lived. Coverage for other subtypes or even variants within a subtype could be improved from a better understanding of the factors that promote HA-specific antibody cross-reactivity. Current assays to evaluate cross-reactivity, such as the ELISA, require a separate test for each antigen and are neither high-throughput nor sample-sparing. To address this need, we produced an array of 283 purified HA proteins from influenza A virus subtypes H1 to H16 and H18 and influenza B virus. To evaluate performance, arrays were probed with sera from individuals before and after a booster dose of inactivated heterologous H5N1 vaccine and naturally infected cases at presentation and follow-up during the 2010 to 2011 influenza season, when H3N2 was prevalent. The response to the H5 vaccine boost was IgG only and confined to H5 variants. The response to natural H3N2 infection consisted of IgG and IgA and was reactive with all H3 variants displayed, as well as against other group 2 HA subtypes. In both groups, responses to HA1 proteins were subtype specific. In contrast, baseline signals were higher, and responses broader, against full-length HA proteins (HA1+HA2) compared to HA1 alone. We propose that these elevated baseline signals and breadth come from the recognition of conserved epitopes in the stalk domain by cross-reactive antibodies accumulated from previous exposure(s) to seasonal influenza virus. This array is a valuable high-throughput alternative to the ELISA for monitoring specificity and cross-reactivity of HA antibodies and has many applications in vaccine development.IMPORTANCE Seasonal influenza is a serious public health problem because the viral infection spreads easily from person to person and because of antigenic drift in neutralizing epitopes. Influenza vaccination is the most effective way to prevent the disease, although challenging because of the constant evolution of influenza virus subtypes. Our high-throughput protein microarrays allow for interrogation of subunit-specific IgG and IgA responses to 283 different HA proteins comprised of HA1 and HA2 domains as well as full-length HA proteins. This provides a tool that allows for novel insights into the response to exposure to influenza virus antigens. Data generated with our technology will enhance our understanding of the factors that improve the strength, breadth, and durability of vaccine-mediated immune responses and develop more effective vaccines.


Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection.

  • Donn J Colby‎ et al.
  • Nature medicine‎
  • 2018‎

Antiretroviral therapy during the earliest stage of acute HIV infection (Fiebig I) might minimize establishment of a latent HIV reservoir and thereby facilitate viremic control after analytical treatment interruption. We show that 8 participants, who initiated treatment during Fiebig I and were treated for a median of 2.8 years, all experienced rapid viral load rebound following analytical treatment interruption, indicating that additional strategies are required to control or eradicate HIV.


Antibodies to the Glycoprotein GP2 Subunit Cross-React between Old and New World Arenaviruses.

  • Fatima Amanat‎ et al.
  • mSphere‎
  • 2018‎

Arenaviruses pose a major public health threat and cause numerous infections in humans each year. Although most viruses belonging to this family do not cause disease in humans, some arenaviruses, such as Lassa virus and Machupo virus, are the etiological agents of lethal hemorrhagic fevers. The absence of a currently licensed vaccine and the highly pathogenic nature of these viruses both make the necessity of developing viable vaccines and therapeutics all the more urgent. Arenaviruses have a single glycoprotein on the surface of virions, the glycoprotein complex (GPC), and this protein can be used as a target for vaccine development. Here, we describe immunization strategies to generate monoclonal antibodies (MAbs) that cross-react between the glycoprotein complexes of both Old World and New World arenaviruses. Several monoclonal antibodies isolated from immunized mice were highly cross-reactive, binding a range of Old World arenavirus glycoproteins, including that of Lassa virus. One such monoclonal antibody, KL-AV-2A1, bound to GPCs of both New World and Old World viruses, including Lassa and Machupo viruses. These cross-reactive antibodies bound to epitopes present on the glycoprotein 2 subunit of the glycoprotein complex, which is relatively conserved among arenaviruses. Monoclonal antibodies binding to these epitopes, however, did not inhibit viral entry as they failed to neutralize a replication-competent vesicular stomatitis virus pseudotyped with the Lassa virus glycoprotein complex in vitro In addition, no protection from virus challenge was observed in in vivo mouse models. Even so, these monoclonal antibodies might still prove to be useful in the development of clinical and diagnostic assays.IMPORTANCE Several viruses in the Arenaviridae family infect humans and cause severe hemorrhagic fevers which lead to high case fatality rates. Due to their pathogenicity and geographic tropisms, these viruses remain very understudied. As a result, an effective vaccine or therapy is urgently needed. Here, we describe efforts to produce cross-reactive monoclonal antibodies that bind to both New and Old World arenaviruses. All of our MAbs seem to be nonneutralizing and nonprotective and target subunit 2 of the glycoprotein. Due to the lack of reagents such as recombinant glycoproteins and antibodies for rapid detection assays, our MAbs could be beneficial as analytic and diagnostic tools.


One-shot vaccination with an insect cell-derived low-dose influenza A H7 virus-like particle preparation protects mice against H7N9 challenge.

  • Miriam Klausberger‎ et al.
  • Vaccine‎
  • 2014‎

Human infections with a novel influenza A H7N9 subtype virus were reported in China recently. The virus caused severe disease with high mortality rates and it raised concerns over its pandemic potential. Here, we assessed in the mouse model protective efficacy of single immunisations with low vaccine doses of insect cell-derived H7 virus-like particles, consisting of hemagglutinin and matrix protein. Vaccinated mice were fully protected and survived a stringent lethal challenge (100 mLD50) with H7N9, even after a single, unadjuvanted, low vaccine dose (0.03 μg). Serum analysis revealed broad reactivity and hemagglutination inhibition activity across a panel of divergent H7 strains. Moreover, we detected significant levels of cross-reactivity to related group 2 hemagglutinins. These data demonstrate that virus-like particle vaccines have the potential to induce broadly protective immunity against the novel H7N9 virus and a variety of other H7 strains.


In the shadow of hemagglutinin: a growing interest in influenza viral neuraminidase and its role as a vaccine antigen.

  • Teddy John Wohlbold‎ et al.
  • Viruses‎
  • 2014‎

Despite the availability of vaccine prophylaxis and antiviral therapeutics, the influenza virus continues to have a significant, annual impact on the morbidity and mortality of human beings, highlighting the continued need for research in the field. Current vaccine strategies predominantly focus on raising a humoral response against hemagglutinin (HA)-the more abundant, immunodominant glycoprotein on the surface of the influenza virus. In fact, anti-HA antibodies are often neutralizing, and are used routinely to assess vaccine immunogenicity. Neuraminidase (NA), the other major glycoprotein on the surface of the influenza virus, has historically served as the target for antiviral drug therapy and is much less studied in the context of humoral immunity. Yet, the quest to discern the exact importance of NA-based protection is decades old. Also, while antibodies against the NA glycoprotein fail to prevent infection of the influenza virus, anti-NA immunity has been shown to lessen the severity of disease, decrease viral lung titers in animal models, and reduce viral shedding. Growing evidence is intimating the possible gains of including the NA antigen in vaccine design, such as expanded strain coverage and increased overall immunogenicity of the vaccine. After giving a tour of general influenza virology, this review aims to discuss the influenza A virus neuraminidase while focusing on both the historical and present literature on the use of NA as a possible vaccine antigen.


Broadly protective murine monoclonal antibodies against influenza B virus target highly conserved neuraminidase epitopes.

  • Teddy John Wohlbold‎ et al.
  • Nature microbiology‎
  • 2017‎

A substantial proportion of influenza-related childhood deaths are due to infection with influenza B viruses, which co-circulate in the human population as two antigenically distinct lineages defined by the immunodominant receptor binding protein, haemagglutinin. While broadly cross-reactive, protective monoclonal antibodies against the haemagglutinin of influenza B viruses have been described, none targeting the neuraminidase, the second most abundant viral glycoprotein, have been reported. Here, we analyse a panel of five murine anti-neuraminidase monoclonal antibodies that demonstrate broad binding, neuraminidase inhibition, in vitro antibody-dependent cell-mediated cytotoxicity and in vivo protection against influenza B viruses belonging to both haemagglutinin lineages and spanning over 70 years of antigenic drift. Electron microscopic analysis of two neuraminidase-antibody complexes shows that the conserved neuraminidase epitopes are located on the head of the molecule and that they are distinct from the enzymatic active site. In the mouse model, one therapeutic dose of antibody 1F2 was more protective than the current standard of treatment, oseltamivir, given twice daily for six days.


An immuno-assay to quantify influenza virus hemagglutinin with correctly folded stalk domains in vaccine preparations.

  • Madhusudan Rajendran‎ et al.
  • PloS one‎
  • 2018‎

The standard method to quantify the hemagglutinin content of influenza virus vaccines is the single radial immunodiffusion assay. This assay primarily relies on polyclonal antibodies against the head domain of the influenza virus hemagglutinin, which is the main target antigen of influenza virus vaccines. Novel influenza virus vaccine candidates that redirect the immune response towards the evolutionary more conserved hemagglutinin stalk, including chimeric hemagglutinin and headless hemagglutinin constructs, are highly dependent on the structural integrity of the protein to present conformational epitopes for neutralizing antibodies. In this study, we describe a novel enzyme-linked immunosorbent assay that allows quantifying the amount of hemagglutinin with correctly folded stalk domains and which could be further developed into a potency assay for stalk-based influenza virus vaccines.


A High-Throughput Assay for Circulating Antibodies Directed Against the S Protein of Severe Acute Respiratory Syndrome Coronavirus 2.

  • Svenja Weiss‎ et al.
  • The Journal of infectious diseases‎
  • 2020‎

More than 24 million infections with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were confirmed globally by September 2020. While polymerase chain reaction-based assays are used for diagnosis, there is a need for high-throughput, rapid serologic methods. A Luminex binding assay was developed and used to assess simultaneously the presence of coronavirus disease 2019 (COVID-19)-specific antibodies in human serum and plasma. Clear differentiation was achieved between specimens from infected and uninfected subjects, and a wide range of serum/plasma antibody levels was delineated in infected subjects. All 25 specimens from 18 patients with COVID-19 were positive in the assays with both the trimeric spike and the receptor-binding domain proteins. None of the 13 specimens from uninfected subjects displayed antibodies to either antigen. There was a highly statistically significant difference between the antibody levels of COVID-19-infected and -uninfected specimens (P < .0001). This high-throughput antibody assay is accurate, requires only 2.5 hours, and uses 5 ng of antigen per test.


Mapping Systemic Inflammation and Antibody Responses in Multisystem Inflammatory Syndrome in Children (MIS-C).

  • Conor N Gruber‎ et al.
  • Cell‎
  • 2020‎

Initially, children were thought to be spared from disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, a month into the epidemic, a novel multisystem inflammatory syndrome in children (MIS-C) emerged. Herein, we report on the immune profiles of nine MIS-C cases. All MIS-C patients had evidence of prior SARS-CoV-2 exposure, mounting an antibody response with intact neutralization capability. Cytokine profiling identified elevated signatures of inflammation (IL-18 and IL-6), lymphocytic and myeloid chemotaxis and activation (CCL3, CCL4, and CDCP1), and mucosal immune dysregulation (IL-17A, CCL20, and CCL28). Immunophenotyping of peripheral blood revealed reductions of non-classical monocytes, and subsets of NK and T lymphocytes, suggesting extravasation to affected tissues. Finally, profiling the autoantigen reactivity of MIS-C plasma revealed both known disease-associated autoantibodies (anti-La) and novel candidates that recognize endothelial, gastrointestinal, and immune-cell antigens. All patients were treated with anti-IL-6R antibody and/or IVIG, which led to rapid disease resolution.


Pre-existing Antineuraminidase Antibodies Are Associated With Shortened Duration of Influenza A(H1N1)pdm Virus Shedding and Illness in Naturally Infected Adults.

  • Hannah E Maier‎ et al.
  • Clinical infectious diseases : an official publication of the Infectious Diseases Society of America‎
  • 2020‎

Influenza causes a substantial burden worldwide, and current seasonal influenza vaccine has suboptimal effectiveness. To develop better, more broadly protective vaccines, a more thorough understanding is needed of how antibodies that target the influenza virus surface antigens, hemagglutinin (HA) (including head and stalk regions) and neuraminidase (NA), impact influenza illness and virus transmission.


Neutralizing Monoclonal Antibodies against the Gn and the Gc of the Andes Virus Glycoprotein Spike Complex Protect from Virus Challenge in a Preclinical Hamster Model.

  • James Duehr‎ et al.
  • mBio‎
  • 2020‎

Hantaviruses are the etiological agent of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). The latter is associated with case fatality rates ranging from 30% to 50%. HCPS cases are rare, with approximately 300 recorded annually in the Americas. Recently, an HCPS outbreak of unprecedented size has been occurring in and around Epuyén, in the southwestern Argentinian state of Chubut. Since November of 2018, at least 29 cases have been laboratory confirmed, and human-to-human transmission is suspected. Despite posing a significant threat to public health, no treatment or vaccine is available for hantaviral disease. Here, we describe an effort to identify, characterize, and develop neutralizing and protective antibodies against the glycoprotein complex (Gn and Gc) of Andes virus (ANDV), the causative agent of the Epuyén outbreak. Using murine hybridoma technology, we generated 19 distinct monoclonal antibodies (MAbs) against ANDV GnGc. When tested for neutralization against a recombinant vesicular stomatitis virus expressing the Andes glycoprotein (GP) (VSV-ANDV), 12 MAbs showed potent neutralization and 8 showed activity in an antibody-dependent cellular cytotoxicity reporter assay. Escape mutant analysis revealed that neutralizing MAbs targeted both the Gn and the Gc. Four MAbs that bound different epitopes were selected for preclinical studies and were found to be 100% protective against lethality in a Syrian hamster model of ANDV infection. These data suggest the existence of a wide array of neutralizing antibody epitopes on hantavirus GnGc with unique properties and mechanisms of action.IMPORTANCE Infections with New World hantaviruses are associated with high case fatality rates, and no specific vaccine or treatment options exist. Furthermore, the biology of the hantaviral GnGc complex, its antigenicity, and its fusion machinery are poorly understood. Protective monoclonal antibodies against GnGc have the potential to be developed into therapeutics against hantaviral disease and are also great tools to elucidate the biology of the glycoprotein complex.


Serological identification of SARS-CoV-2 infections among children visiting a hospital during the initial Seattle outbreak.

  • Adam S Dingens‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2020‎

Children are strikingly underrepresented in COVID-19 case counts1-3. In the United States, children represent 22% of the population but only 1.7% of confirmed SARS-CoV-2 cases1. One possibility is that symptom-based viral testing is less likely to identify infected children, since they often experience milder disease than adults1,4-7. To better assess the frequency of pediatric SARS-CoV-2 infection, we serologically screened 1,775 residual samples from Seattle Children's Hospital collected from 1,076 children seeking medical care during March and April of 2020. Only one child was seropositive in March, but seven were seropositive in April for a period seroprevalence of ≈ 1%. Most seropositive children (6/8) were not suspected of having had COVID-19. The sera of seropositive children had neutralizing activity, including one that neutralized at a dilution >1:18,000. Therefore, an increasing number of children seeking medical care were infected by SARS-CoV-2 during the early Seattle outbreak despite few positive viral tests.


Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection.

  • Jennifer M Dan‎ et al.
  • Science (New York, N.Y.)‎
  • 2021‎

Understanding immune memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for improving diagnostics and vaccines and for assessing the likely future course of the COVID-19 pandemic. We analyzed multiple compartments of circulating immune memory to SARS-CoV-2 in 254 samples from 188 COVID-19 cases, including 43 samples at ≥6 months after infection. Immunoglobulin G (IgG) to the spike protein was relatively stable over 6+ months. Spike-specific memory B cells were more abundant at 6 months than at 1 month after symptom onset. SARS-CoV-2-specific CD4+ T cells and CD8+ T cells declined with a half-life of 3 to 5 months. By studying antibody, memory B cell, CD4+ T cell, and CD8+ T cell memory to SARS-CoV-2 in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics.


Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron.

  • Juan Manuel Carreño‎ et al.
  • Nature‎
  • 2022‎

The Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially identified in November 2021 in South Africa and Botswana, as well as in a sample from a traveller from South Africa in Hong Kong1,2. Since then, Omicron has been detected globally. This variant appears to be at least as infectious as Delta (B.1.617.2), has already caused superspreader events3, and has outcompeted Delta within weeks in several countries and metropolitan areas. Omicron hosts an unprecedented number of mutations in its spike gene and early reports have provided evidence for extensive immune escape and reduced vaccine effectiveness2,4-6. Here we investigated the virus-neutralizing and spike protein-binding activity of sera from convalescent, double mRNA-vaccinated, mRNA-boosted, convalescent double-vaccinated and convalescent boosted individuals against wild-type, Beta (B.1.351) and Omicron SARS-CoV-2 isolates and spike proteins. Neutralizing activity of sera from convalescent and double-vaccinated participants was undetectable or very low against Omicron compared with the wild-type virus, whereas neutralizing activity of sera from individuals who had been exposed to spike three or four times through infection and vaccination was maintained, although at significantly reduced levels. Binding to the receptor-binding and N-terminal domains of the Omicron spike protein was reduced compared with binding to the wild type in convalescent unvaccinated individuals, but was mostly retained in vaccinated individuals.


Antigen modifications improve nucleoside-modified mRNA-based influenza virus vaccines in mice.

  • Alec W Freyn‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2021‎

Nucleoside-modified, lipid nanoparticle-encapsulated mRNAs have recently emerged as suitable vaccines for influenza viruses and other pathogens in part because the platform allows delivery of multiple antigens in a single immunization. mRNA vaccines allow for easy antigen modification, enabling rapid iterative design. We studied protein modifications such as mutating functional sites, changing secretion potential, and altering protein conformation, which could improve the safety and/or potency of mRNA-based influenza virus vaccines. Mice were vaccinated intradermally with wild-type or mutant constructs of influenza virus hemagglutinin (HA), neuraminidase (NA), matrix protein 2 (M2), nucleoprotein (NP), or matrix protein 1 (M1). Membrane-bound HA constructs elicited more potent and protective antibody responses than secreted forms. Altering the catalytic site of NA to reduce enzymatic activity decreased reactogenicity while protective immunity was maintained. Disruption of M2 ion channel activity improved immunogenicity and protective efficacy. A comparison of internal proteins NP and M1 revealed the superiority of NP in conferring protection from influenza virus challenge. These findings support the use of the nucleoside-modified mRNA platform for guided antigen design for influenza virus with extension to other pathogens.


Safety and Immunogenicity Analysis of a Newcastle Disease Virus (NDV-HXP-S) Expressing the Spike Protein of SARS-CoV-2 in Sprague Dawley Rats.

  • Johnstone Tcheou‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Despite global vaccination efforts, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread globally. Relatively high vaccination rates have been achieved in most regions of the United States and several countries worldwide. However, access to vaccines in low- and mid-income countries (LMICs) is still suboptimal. Second generation vaccines that are universally affordable and induce systemic and mucosal immunity are needed. Here we performed an extended safety and immunogenicity analysis of a second-generation SARS-CoV-2 vaccine consisting of a live Newcastle disease virus vector expressing a pre-fusion stabilized version of the spike protein (NDV-HXP-S) administered intranasally (IN), intramuscularly (IM), or IN followed by IM in Sprague Dawley rats. Local reactogenicity, systemic toxicity, and post-mortem histopathology were assessed after the vaccine administration, with no indication of severe local or systemic reactions. Immunogenicity studies showed that the three vaccination regimens tested elicited high antibody titers against the wild type SARS-CoV-2 spike protein and the NDV vector. Moreover, high antibody titers were induced against the spike of B.1.1.7 (alpha), B.1.351 (beta) and B.1.617.2 (delta) variants of concern (VOCs). Importantly, robust levels of serum antibodies with neutralizing activity against the authentic SARS-CoV-2 USA-WA1/2020 isolate were detected after the boost. Overall, our study expands the pre-clinical safety and immunogenicity characterization of NDV-HXP-S and reinforces previous findings in other animal models about its high immunogenicity. Clinical testing of this vaccination approach is ongoing in different countries including Thailand, Vietnam, Brazil and Mexico.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: