Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats.

  • Justus Stenzig‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2018‎

Heart failure is associated with altered gene expression and DNA methylation. De novo DNA methylation is associated with gene silencing, but its role in cardiac pathology remains incompletely understood. We hypothesized that inhibition of DNA methyltransferases (DNMT) might prevent the deregulation of gene expression and the deterioration of cardiac function under pressure overload (PO). To test this hypothesis, we evaluated a DNMT inhibitor in PO in rats and analysed DNA methylation in cardiomyocytes.


BatMeth: improved mapper for bisulfite sequencing reads on DNA methylation.

  • Jing-Quan Lim‎ et al.
  • Genome biology‎
  • 2012‎

DNA methylation plays a crucial role in higher organisms. Coupling bisulfite treatment with next generation sequencing enables the interrogation of 5-methylcytosine sites in the genome. However, bisulfite conversion introduces mismatches between the reads and the reference genome, which makes mapping of Illumina and SOLiD reads slow and inaccurate. BatMeth is an algorithm that integrates novel Mismatch Counting, List Filtering, Mismatch Stage Filtering and Fast Mapping onto Two Indexes components to improve unique mapping rate, speed and precision. Experimental results show that BatMeth is faster and more accurate than existing tools. BatMeth is freely available at http://code.google.com/p/batmeth/.


ChIP'ing the mammalian genome: technical advances and insights into functional elements.

  • Eleanor Wong‎ et al.
  • Genome medicine‎
  • 2009‎

Characterization of the functional components in mammalian genomes depends on our ability to completely elucidate the genetic and epigenetic regulatory networks of chromatin states and nuclear architecture. Such endeavors demand the availability of robust and effective approaches to characterizing protein-DNA associations in their native chromatin environments. Consider able progress has been made through the applica tion of chromatin immunoprecipitation (ChIP) to study chromatin biology in cells. Coupled with genome-wide analyses, ChIP-based assays enable us to take a global, unbiased and comprehensive view of transcriptional control, epigenetic regulation and chromatin structures, with high precision and versatility. The integrated knowledge derived from these studies is used to decipher gene regulatory networks and define genome organization. In this review, we discuss this powerful approach and its current advances. We also explore the possible future developments of ChIP-based approaches to interrogating long-range chromatin interactions and their impact on the mechanisms regulating gene expression.


CTCF-mediated functional chromatin interactome in pluripotent cells.

  • Lusy Handoko‎ et al.
  • Nature genetics‎
  • 2011‎

Mammalian genomes are viewed as functional organizations that orchestrate spatial and temporal gene regulation. CTCF, the most characterized insulator-binding protein, has been implicated as a key genome organizer. However, little is known about CTCF-associated higher-order chromatin structures at a global scale. Here we applied chromatin interaction analysis by paired-end tag (ChIA-PET) sequencing to elucidate the CTCF-chromatin interactome in pluripotent cells. From this analysis, we identified 1,480 cis- and 336 trans-interacting loci with high reproducibility and precision. Associating these chromatin interaction loci with their underlying epigenetic states, promoter activities, enhancer binding and nuclear lamina occupancy, we uncovered five distinct chromatin domains that suggest potential new models of CTCF function in chromatin organization and transcriptional control. Specifically, CTCF interactions demarcate chromatin-nuclear membrane attachments and influence proper gene expression through extensive cross-talk between promoters and regulatory elements. This highly complex nuclear organization offers insights toward the unifying principles that govern genome plasticity and function.


Complex Economic Behavior Patterns Are Constructed from Finite, Genetically Controlled Modules of Behavior.

  • Cornelia N Stacher Hörndli‎ et al.
  • Cell reports‎
  • 2019‎

Complex ethological behaviors could be constructed from finite modules that are reproducible functional units of behavior. Here, we test this idea for foraging and develop methods to dissect rich behavior patterns in mice. We uncover discrete modules of foraging behavior reproducible across different strains and ages, as well as nonmodular behavioral sequences. Modules differ in terms of form, expression frequency, and expression timing and are expressed in a probabilistically determined order. Modules shape economic patterns of feeding, exposure, activity, and perseveration responses. The modular architecture of foraging changes developmentally, and different developmental, genetic, and parental effects are found to shape the expression of specific modules. Dissecting modules from complex patterns is powerful for phenotype analysis. We discover that both parental alleles of the imprinted Prader-Willi syndrome gene Magel2 are functional in mice but regulate different modules. Our study found that complex economic patterns are built from finite, genetically controlled modules.


Analysis of clinically relevant variants from ancestrally diverse Asian genomes.

  • Sock Hoai Chan‎ et al.
  • Nature communications‎
  • 2022‎

Asian populations are under-represented in human genomics research. Here, we characterize clinically significant genetic variation in 9051 genomes representing East Asian, South Asian, and severely under-represented Austronesian-speaking Southeast Asian ancestries. We observe disparate genetic risk burden attributable to ancestry-specific recurrent variants and identify individuals with variants specific to ancestries discordant to their self-reported ethnicity, mostly due to cryptic admixture. About 27% of severe recessive disorder genes with appreciable carrier frequencies in Asians are missed by carrier screening panels, and we estimate 0.5% Asian couples at-risk of having an affected child. Prevalence of medically-actionable variant carriers is 3.4% and a further 1.6% harbour variants with potential for pathogenic classification upon additional clinical/experimental evidence. We profile 23 pharmacogenes with high-confidence gene-drug associations and find 22.4% of Asians at-risk of Centers for Disease Control and Prevention Tier 1 genetic conditions concurrently harbour pharmacogenetic variants with actionable phenotypes, highlighting the benefits of pre-emptive pharmacogenomics. Our findings illuminate the diversity in genetic disease epidemiology and opportunities for precision medicine for a large, diverse Asian population.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: