2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polα-dependent fill-in.

  • Zachary Mirman‎ et al.
  • Nature‎
  • 2018‎

In DNA repair, the resection of double-strand breaks dictates the choice between homology-directed repair-which requires a 3' overhang-and classical non-homologous end joining, which can join unresected ends1,2. BRCA1-mutant cancers show minimal resection of double-strand breaks, which renders them deficient in homology-directed repair and sensitive to inhibitors of poly(ADP-ribose) polymerase 1 (PARP1)3-8. When BRCA1 is absent, the resection of double-strand breaks is thought to be prevented by 53BP1, RIF1 and the REV7-SHLD1-SHLD2-SHLD3 (shieldin) complex, and loss of these factors diminishes sensitivity to PARP1 inhibitors4,6-9. Here we address the mechanism by which 53BP1-RIF1-shieldin regulates the generation of recombinogenic 3' overhangs. We report that CTC1-STN1-TEN1 (CST)10, a complex similar to replication protein A that functions as an accessory factor of polymerase-α (Polα)-primase11, is a downstream effector in the 53BP1 pathway. CST interacts with shieldin and localizes with Polα to sites of DNA damage in a 53BP1- and shieldin-dependent manner. As with loss of 53BP1, RIF1 or shieldin, the depletion of CST leads to increased resection. In BRCA1-deficient cells, CST blocks RAD51 loading and promotes the efficacy of PARP1 inhibitors. In addition, Polα inhibition diminishes the effect of PARP1 inhibitors. These data suggest that CST-Polα-mediated fill-in helps to control the repair of double-strand breaks by 53BP1, RIF1 and shieldin.


BAF180 promotes cohesion and prevents genome instability and aneuploidy.

  • Peter M Brownlee‎ et al.
  • Cell reports‎
  • 2014‎

BAF180, a subunit of the PBAF chromatin remodeling complex, is frequently mutated in cancer. Although PBAF regulates transcription, it remains unclear whether this is what drives tumorigenesis in cells lacking BAF180. Based on data from yeast, we hypothesized that BAF180 may prevent tumorigenesis by promoting cohesion. Here, we show BAF180 is required for centromeric cohesion in mouse and human cells. Mutations identified in tumor samples are unable to support this activity, and also compromise cohesion-dependent functions in yeast. We provide evidence of genome instability in line with loss of cohesion, and importantly, we find dynamic chromosome instability following DNA damage in cells lacking BAF180. These data demonstrate a function for BAF180 in promoting genome stability that is distinct from its well-characterized role in transcriptional regulation, uncovering a potent mechanism for its tumor-suppressor activity.


Canine distemper epizootic among red foxes, Italy, 2009.

  • Vito Martella‎ et al.
  • Emerging infectious diseases‎
  • 2010‎

No abstract available


PLK1 regulates CtIP and DNA2 interplay in long-range DNA end resection.

  • Ilaria Ceppi‎ et al.
  • Genes & development‎
  • 2023‎

DNA double-strand break (DSB) repair is initiated by DNA end resection. CtIP acts in short-range resection to stimulate MRE11-RAD50-NBS1 (MRN) to endonucleolytically cleave 5'-terminated DNA to bypass protein blocks. CtIP also promotes the DNA2 helicase-nuclease to accelerate long-range resection downstream from MRN. Here, using AlphaFold2, we identified CtIP-F728E-Y736E as a separation-of-function mutant that is still proficient in conjunction with MRN but is not able to stimulate ssDNA degradation by DNA2. Accordingly, CtIP-F728E-Y736E impairs physical interaction with DNA2. Cellular assays revealed that CtIP-F728E-Y736E cells exhibit reduced DSB-dependent chromatin-bound RPA, impaired long-range resection, and increased sensitivity to DSB-inducing drugs. Previously, CtIP was shown to be targeted by PLK1 to inhibit long-range resection, yet the underlying mechanism was unclear. We show that the DNA2-interacting region in CtIP includes the PLK1 target site at S723. The integrity of S723 in CtIP is necessary for the stimulation of DNA2, and phosphorylation of CtIP by PLK1 in vitro is consequently inhibitory, explaining why PLK1 restricts long-range resection. Our data support a model in which CDK-dependent phosphorylation of CtIP activates resection by MRN in S phase, and PLK1-mediated phosphorylation of CtIP disrupts CtIP stimulation of DNA2 to attenuate long-range resection later at G2/M.


Canine Distemper Outbreaks in Wild Carnivores in Northern Italy.

  • Tiziana Trogu‎ et al.
  • Viruses‎
  • 2021‎

Canine distemper (CD) is a fatal, highly contagious disease of wild and domestic carnivores. In the Alpine territory, several outbreaks have occurred in the past few decades within wild populations. This study investigated the presence of canine distemper virus (CDV) infections in wild carnivores in Lombardy, relating to the different circulating genotypes. From 2018 to 2020, foxes, badgers, and martens collected during passive surveillance were subjected to necropsy and histological examination, showing classical signs and microscopic lesions related to CDV. Pools of viscera from each animal were analysed by molecular methods and immunoelectron microscopy. Total prevalences of 39.7%, 52.6%, and 14.3% were recorded in foxes, badgers, and stone martens, respectively. A phylogenetic analysis showed that the sequences obtained belonged to the European 1 lineage and were divided into two different clades (a and b) according to the geographical conformation of alpine valleys included in the study. Clade a was related to the European outbreaks originating from Germany in 2006-2010, while clade b was closely related to the CDV sequences originating from northeastern Italy during the 2011-2018 epidemic wave. Our results suggest that CDV is currently well adapted to wild carnivores, mostly circulating with subclinical manifestations and without severe impact on the dynamics of these populations.


Inhibition of MRN activity by a telomere protein motif.

  • Freddy Khayat‎ et al.
  • Nature communications‎
  • 2021‎

The MRN complex (MRX in Saccharomyces cerevisiae, made of Mre11, Rad50 and Nbs1/Xrs2) initiates double-stranded DNA break repair and activates the Tel1/ATM kinase in the DNA damage response. Telomeres counter both outcomes at chromosome ends, partly by keeping MRN-ATM in check. We show that MRX is disabled by telomeric protein Rif2 through an N-terminal motif (MIN, MRN/X-inhibitory motif). MIN executes suppression of Tel1, DNA end-resection and non-homologous end joining by binding the Rad50 N-terminal region. Our data suggest that MIN promotes a transition within MRX that is not conductive for endonuclease activity, DNA-end tethering or Tel1 kinase activation, highlighting an Achilles' heel in MRN, which we propose is also exploited by the RIF2 paralog ORC4 (Origin Recognition Complex 4) in Kluyveromyces lactis and the Schizosaccharomyces pombe telomeric factor Taz1, which is evolutionarily unrelated to Orc4/Rif2. This raises the possibility that analogous mechanisms might be deployed in other eukaryotes as well.


Sae2 and Rif2 regulate MRX endonuclease activity at DNA double-strand breaks in opposite manners.

  • Antonio Marsella‎ et al.
  • Cell reports‎
  • 2021‎

The Mre11-Rad50-Xrs2 (MRX) complex detects and processes DNA double-strand breaks (DSBs). Its DNA binding and processing activities are regulated by transitions between an ATP-bound state and a post-hydrolysis cutting state that is nucleolytically active. Mre11 endonuclease activity is stimulated by Sae2, whose lack increases MRX persistence at DSBs and checkpoint activation. Here we show that the Rif2 protein inhibits Mre11 endonuclease activity and is responsible for the increased MRX retention at DSBs in sae2Δ cells. We identify a Rad50 residue that is important for Rad50-Rif2 interaction and Rif2 inhibition of Mre11 nuclease. This residue is located near a Rad50 surface that binds Sae2 and is important in stabilizing the Mre11-Rad50 (MR) interaction in the cutting state. We propose that Sae2 stimulates Mre11 endonuclease activity by stabilizing a post-hydrolysis MR conformation that is competent for DNA cleavage, whereas Rif2 antagonizes this Sae2 function and stabilizes an endonuclease inactive MR conformation.


Tick-Borne Encephalitis, Lombardy, Italy.

  • Alessandra Gaffuri‎ et al.
  • Emerging infectious diseases‎
  • 2024‎

Tick-borne encephalitis was limited to northeast portions of Italy. We report in Lombardy, a populous region in the northwest, a chamois displaying clinical signs of tickborne encephalitis virus that had multiple virus-positive ticks attached, as well as a symptomatic man. Further, we show serologic evidence of viral circulation in the area.


Parapoxvirus infections of red deer, Italy.

  • Alessandra Scagliarini‎ et al.
  • Emerging infectious diseases‎
  • 2011‎

To characterize parapoxviruses causing severe disease in wild ruminants in Stelvio Park, Italy, we sequenced and compared the DNA of several isolates. Results demonstrated that the red deer isolates are closely related to the parapox of red deer in New Zealand virus.


Xrs2 Dependent and Independent Functions of the Mre11-Rad50 Complex.

  • Julyun Oh‎ et al.
  • Molecular cell‎
  • 2016‎

The Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex orchestrates the cellular response to DSBs through its structural, enzymatic, and signaling roles. Xrs2/Nbs1 is essential for nuclear translocation of Mre11, but its role as a component of the complex is not well defined. Here, we demonstrate that nuclear localization of Mre11 (Mre11-NLS) is able to bypass several functions of Xrs2, including DNA end resection, meiosis, hairpin resolution, and cellular resistance to clastogens. Using purified components, we show that the MR complex has equivalent activity to MRX in cleavage of protein-blocked DNA ends. Although Xrs2 physically interacts with Sae2, we found that end resection in its absence remains Sae2 dependent in vivo and in vitro. MRE11-NLS was unable to rescue the xrs2Δ defects in Tel1/ATM kinase signaling and non-homologous end joining, consistent with the role of Xrs2 as a chaperone and adaptor protein coordinating interactions between the MR complex and other repair proteins.


By-Products from Winemaking and Olive Mill Value Chains for the Enrichment of Refined Olive Oil: Technological Challenges and Nutraceutical Features.

  • Monica Macaluso‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2020‎

A growing body of literature is available about the valorization of food by-products to produce functional foods that combine the basic nutritional impact with the improvement of the health status of consumers. In this context, this study had two main objectives: (i) An innovative multistep extraction process for the production of a refined olive oil enriched with phenolic compounds (PE-ROO) extracted from olive pomace, olive leaves, or grape marc was presented and discussed. (ii) The most promising PE-ROOs were selected and utilized in in vitro and in vivo trials in order to determine their effectiveness in the management of high fat diet-induced-metabolic syndrome and oxidative stress in rats. The best results were obtained when olive leaves were used as source of phenols, regardless of the chemical composition of the solvent utilized for the extraction. Furthermore, while ethanol/hexane mixture was confirmed as a good solvent for the extraction of phenols compounds soluble in oil, the mix ROO/ethanol also showed a good extracting power from olive leaves. Besides, the ROO enriched with phenols extracted from olive leaves revealed an interesting beneficial effect to counteract high fat diet-induced-metabolic disorder and oxidative stress in rats, closely followed by ROO enriched by utilizing grape marc.


Epitheliotropic Infections in Wildlife Ruminants From the Central Alps and Stelvio National Park.

  • Laura Gallina‎ et al.
  • Frontiers in veterinary science‎
  • 2020‎

The mountain chain of the Alps, represents the habitat of alpine fauna where the red deer (Cervus elaphus) population is the outmost numerous, followed by the chamois (Rupicapra rupicapra) and the alpine ibex (Capra ibex) at higher altitudes. Previous reports showed the circulation of epitheliotropic viruses, belonging to the families Papillomaviridae and Poxviridae, causing skin and mucosal lesions in wild ruminants of the Stelvio National Park, situated in the area. To deepen our knowledge on the natural dynamics of the infections, a passive surveillance on all the cases of proliferative skin and mucosal lesions in wild ruminants was performed. Twenty-seven samples (11 chamois, 10 red deer and 6 ibex) collected from 2008 to 2018 were analyzed by negative staining electron microscopy, histology, and PCR followed by genome sequencing and phylogenetic analyses. Results confirmed the spread of Parapoxvirus of Red Deer in New Zealand (PVNZ) in Italy, and its ability to cause severe lesions i.e., erosions and ulcers in the mouth. We showed for the first time a PVNZ/CePV1v (C. elaphus papillomavirus 1 variant) co-infection identified in one red deer. This result supports previous evidence on the ability of papillomavirus and parapoxvirus to mutually infect the same host tissue. Interestingly two ibex and one chamois showing orf virus (OV) skin lesions were shown to be co-infected with bovine papillomavirus type 1 and 2. The presence of bovine papillomavirus, in orf virus induced lesions of chamois and ibex raises the question of its pathogenetic role in these animal species. For the first time, OV/CePV1v co-infection was demonstrated in another chamois. CePV1v is sporadically reported in red deer throughout Europe and is considered species specific, its identification in a chamois suggests its ability of cross-infecting different animal species. Poxviruses and papillomavirus have been simultaneously detected also in the skin lesions of cattle, bird and human suggesting a possible advantageous interaction between these viruses. Taken together, our findings add further information on the epidemiology and pathogenetic role of epitheliotropic viruses in wild ruminants living in the central Alps and in Stelvio National Park.


Survey on the Presence of Viruses of Economic and Zoonotic Importance in Avifauna in Northern Italy.

  • Tiziana Trogu‎ et al.
  • Microorganisms‎
  • 2021‎

Wild birds play an important role in the circulation and spread of pathogens that are potentially zoonotic or of high economic impact on zootechnical production. They include, for example, West Nile virus (WNV), Usutu virus (USUV), avian influenza virus (AIV), and Newcastle disease virus (NDV), which, despite having mostly an asymptomatic course in wild birds, have a strong impact on public health and zootechnical production. This study investigated the presence of these viruses in several wild bird species from North Italy during the biennium 2019-2020. Wild birds derived from 76 different species belonging to 20 orders. Out of 679 birds, 27 were positive for WNV (lineage 2) with a prevalence of 4%; all birds were negative for USUV; one gull was positive for H13N6 influenza virus, and 12 samples were positive for NDV with a prevalence of 2%. Despite the low prevalence observed, the analyses performed on these species provide further data, allowing a better understanding of the diffusion and evolution of diseases of both economic and zoonotic importance.


Effect of Argon as Filling Gas of the Storage Atmosphere on the Shelf-Life of Sourdough Bread-Case Study on PDO Tuscan Bread.

  • Alessandro Bianchi‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2022‎

The short shelf-life of PDO Tuscan bread limits its distribution to markets close to the production area, affecting its commercial success and the economic return by supply chain operators. While the application of MAP to store bread is widely accepted, the suitability of this technique to extend the shelf life of the PDO Tuscan bread is still to be explored. Furthermore, to the best of our knowledge no data are available in the literature about the use of argon as filling gas neither in pure atmosphere nor in combination with CO2. In this context, the aim of this study was to evaluate the effect of different modified packaging atmospheres on the shelf-life of sourdough bread. Slices of bread were stored individually in plastic bags at 23 °C in five different atmospheres (Ar (100%), N2 (100%), CO2 (100%), Mix CO2/N2 (70% CO2, 30% N2), Mix CO2/Ar (70% CO2, 30% Ar)), and Air was selected as a control. To select the best storage conditions, both chemical-physical, rheological, and organoleptic features were evaluated. Results showed that pure gases (CO2, N2, Ar) displayed good qualities as storage atmospheres compared to Air. In contrast, both Mix CO2/N2 and Mix CO2/Ar were the best in slowing down the staling process, thus doubling the shelf-life of bread, compared to other atmospheres. In conclusion, argon, as a preservation atmosphere, seems to be the best solution to extend the shelf-life of PDO Tuscan bread.


Bread Fortified with Cooked Purple Potato Flour and Citrus Albedo: An Evaluation of Its Compositional and Sensorial Properties.

  • Isabella Taglieri‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2021‎

This research aimed to explore the feasibility of fortifying bread with cooked Vitelotte potato powder and Citrus albedo, comparing the use of baker's yeast or sourdough as leavening agents. Breads obtained were thus subjected to physico-chemical and sensory characterizations. The replacement of part of the wheat flour with purple potato and albedo determined a significant enhancement of the phenolic profile and antioxidant status of fortified breads, as well as a longer shelf life. Thanks to its acidity and antimicrobial activity, sourdough improved the levels of health-promoting compounds and stability. Both the fortification and the leavening agent deeply affected the organoleptic, expression, and the aroma profile, of the fortified bread. Interestingly, albedo addition, despite its effectiveness in boosting the phenolic profile, determined a higher perception of aftertaste and bitterness, irrespective of the leavening agent. Based on these results, the use of purple potatoes and Citrus albedo, if properly formulated, could represent a valuable strategy for the development of high-quality products, with longer shelf-life.


Mammalian Orthoreovirus (MRV) Is Widespread in Wild Ungulates of Northern Italy.

  • Sara Arnaboldi‎ et al.
  • Viruses‎
  • 2021‎

Mammalian orthoreoviruses (MRVs) are emerging infectious agents that may affect wild animals. MRVs are usually associated with asymptomatic or mild respiratory and enteric infections. However, severe clinical manifestations have been occasionally reported in human and animal hosts. An insight into their circulation is essential to minimize the risk of diffusion to farmed animals and possibly to humans. The aim of this study was to investigate the presence of likely zoonotic MRVs in wild ungulates. Liver samples were collected from wild boar, red deer, roe deer, and chamois. Samples originated from two areas (Sondrio and Parma provinces) in Northern Italy with different environmental characteristics. MRV detection was carried out by PCR; confirmation by sequencing and typing for MRV type 3, which has been frequently associated with disease in pigs, were carried out for positive samples. MRV prevalence was as high as 45.3% in wild boars and 40.6% in red deer in the Sondrio area, with lower prevalence in the Parma area (15.4% in wild boars). Our findings shed light on MRV occurrence and distribution in some wild species and posed the issue of their possible role as reservoir.


Regulatory control of DNA end resection by Sae2 phosphorylation.

  • Elda Cannavo‎ et al.
  • Nature communications‎
  • 2018‎

DNA end resection plays a critical function in DNA double-strand break repair pathway choice. Resected DNA ends are refractory to end-joining mechanisms and are instead channeled to homology-directed repair. Using biochemical, genetic, and imaging methods, we show that phosphorylation of Saccharomyces cerevisiae Sae2 controls its capacity to promote the Mre11-Rad50-Xrs2 (MRX) nuclease to initiate resection of blocked DNA ends by at least two distinct mechanisms. First, DNA damage and cell cycle-dependent phosphorylation leads to Sae2 tetramerization. Second, and independently, phosphorylation of the conserved C-terminal domain of Sae2 is a prerequisite for its physical interaction with Rad50, which is also crucial to promote the MRX endonuclease. The lack of this interaction explains the phenotype of rad50S mutants defective in the processing of Spo11-bound DNA ends during meiotic recombination. Our results define how phosphorylation controls the initiation of DNA end resection and therefore the choice between the key DNA double-strand break repair mechanisms.


Clinical and volumetric outcomes after vertical ridge augmentation using computer-aided-design/computer-aided manufacturing (CAD/CAM) customized titanium meshes: a pilot study.

  • Alessandro Cucchi‎ et al.
  • BMC oral health‎
  • 2020‎

One of the most recent innovations in bone augmentation surgery is represented by computer-aided-design/computer-aided-manufacturing (CAD/CAM) customized titanium meshes, which can be used to restore vertical bone defects before implant-prosthetic rehabilitations. The aim of this study was to evaluate the effectiveness/reliability of this technique in a consecutive series of cases.


Viral decay kinetics in the highly active antiretroviral therapy-treated rhesus macaque model of AIDS.

  • Jesse D Deere‎ et al.
  • PloS one‎
  • 2010‎

To prevent progression to AIDS, persons infected with human immunodeficiency virus type 1 (HIV-1) must remain on highly active antiretroviral therapy (HAART) indefinitely since this modality does not eradicate the virus. The mechanisms involved in viral persistence during HAART are poorly understood, but an animal model of HAART could help elucidate these mechanisms and enable studies of HIV-1 eradication strategies. Due to the specificity of non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) for HIV-1, we have used RT-SHIV, a chimeric virus of simian immunodeficiency virus with RT from HIV-1. This virus is susceptible to NNRTIs and causes an AIDS-like disease in rhesus macaques. In this study, two groups of HAART-treated, RT-SHIV-infected macaques were analyzed to determine viral decay kinetics. In the first group, viral loads were monitored with a standard TaqMan RT-PCR assay with a limit of detection of 50 viral RNA copies per mL. Upon initiation of HAART, viremia decayed in a bi-phasic manner with half-lives of 1.7 and 8.5 days, respectively. A third phase was observed with little further decay. In the second group, the macaques were followed longitudinally with a more sensitive assay utilizing ultracentrifugation to concentrate virus from plasma. Bi-phasic decay of viral RNA was also observed in these animals with half-lives of 1.8 and 5.8 days. Viral loads in these animals during a third phase ranged from 2-58 RNA copies/mL, with little decay over time. The viral decay kinetics observed in these macaques are similar to those reported for HIV-1 infected humans. These results demonstrate that low-level viremia persists in RT-SHIV-infected macaques despite a HAART regimen commonly used in humans.


Phosphorylated CtIP Functions as a Co-factor of the MRE11-RAD50-NBS1 Endonuclease in DNA End Resection.

  • Roopesh Anand‎ et al.
  • Molecular cell‎
  • 2016‎

To repair a DNA double-strand break (DSB) by homologous recombination (HR), the 5'-terminated strand of the DSB must be resected. The human MRE11-RAD50-NBS1 (MRN) and CtIP proteins were implicated in the initiation of DNA end resection, but the underlying mechanism remained undefined. Here, we show that CtIP is a co-factor of the MRE11 endonuclease activity within the MRN complex. This function is absolutely dependent on CtIP phosphorylation that includes the key cyclin-dependent kinase target motif at Thr-847. Unlike in yeast, where the Xrs2/NBS1 subunit is dispensable in vitro, NBS1 is absolutely required in the human system. The MRE11 endonuclease in conjunction with RAD50, NBS1, and phosphorylated CtIP preferentially cleaves 5'-terminated DNA strands near DSBs. Our results define the initial step of HR that is particularly relevant for the processing of DSBs bearing protein blocks.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: