Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

Perinatal asphyxia results in altered expression of the hippocampal acylethanolamide/endocannabinoid signaling system associated to memory impairments in postweaned rats.

  • Eduardo Blanco‎ et al.
  • Frontiers in neuroanatomy‎
  • 2015‎

Perinatal asphyxia (PA) is an obstetric complication that strongly affects the CNS. The endocannabinoid system (ECS) is a lipid transmitter system involved in several physiological processes including synaptic plasticity, neurogenesis, memory, and mood. Endocannabinoids, and other acylethanolamides (AEs) without endocannabinoid activity, have recently received growing attention due to their potential neuroprotective functions in neurological disorders, including cerebral ischemia. In the present study, we aimed to analyze the changes produced by PA in the major metabolic enzymes and receptors of the ECS/AEs in the hippocampus using a rodent model of PA. To induce PA, we removed uterine horns from ready-to-deliver rats and immersed them into a water bath during 19 min. Animals delivered spontaneously or by cesarean section were employed as controls. At 1 month of age, cognitive functions were assessed and immunohistochemical procedures were carried out to determine the expression of NeuN and glial fibrillary acidic protein, enzymes responsible for synthesis (DAGLα and NAPE-PLD) and degradation (FAAH) of ECS/AEs and their receptors (CB1 and PPARα) in the hippocampus. Postweaned asphyctic rats showed impaired recognition and spatial reference memory that were accompanied by hippocampal astrogliosis and changes in the expression of enzymes and receptors. The most remarkable findings in asphyctic rats were a decrease in the expression of NAPE-PLD and PPARα in both hippocampal areas CA1 and CA3. In addition, postweaned cesarean delivery rats showed an increase in the immunolabeling for FAAH in the hippocampal CA3 area. Since, NAPE-PLD and PPARα are proteins that participate in the biochemical process of AEs, specially the neuroprotective oleoylethanolamide, these results suggest that PA dysregulates this system. These data encourage conducting future studies using AEs as potential neuroprotective compounds in animal models of PA.


Effects of genetic deletion versus pharmacological blockade of the LPA1 receptor on depression-like behaviour and related brain functional activity.

  • Román Darío Moreno-Fernández‎ et al.
  • Disease models & mechanisms‎
  • 2018‎

Animal models of psychopathology are particularly useful for studying the neurobiology of depression and characterising the subtypes. Recently, our group was the first to identify a possible relationship between the LPA1 receptor and a mixed anxiety-depression phenotype. Specifically, maLPA1-null mice exhibited a phenotype characterised by depressive and anxious features. However, the constitutive lack of the gene encoding the LPA1 receptor (Lpar1) can induce compensatory mechanisms that might have resulted in the observed deficits. Therefore, in the present study, we have compared the impact of permanent loss and acute pharmacological inhibition of the LPA1 receptor on despair-like behaviours and on the functional brain map associated with these behaviours, as well as on the degree of functional connectivity among structures. Although the antagonist (intracerebroventricularly administered Ki16425) mimicked some, but not all, effects of genetic deletion of the LPA1 receptor on the results of behavioural tests and engaged different brain circuits, both treatments induced depression-like behaviours with an agitation component that was linked to functional changes in key brain regions involved in the stress response and emotional regulation. In addition, both Ki16425 treatment and LPA1 receptor deletion modified the functional brain maps in a way similar to the changes observed in depressed patients. In summary, the pharmacological and genetic approaches could ultimately assist in dissecting the function of the LPA1 receptor in emotional regulation and brain responses, and a combination of those approaches might provide researchers with an opportunity to develop useful drugs that target the LPA1 receptor as treatments for depression, mainly the anxious subtype.This article has an associated First Person interview with the first author of the paper.


Reduced wheel running and blunted effects of voluntary exercise in LPA1-null mice: the importance of assessing the amount of running in transgenic mice studies.

  • Estela Castilla-Ortega‎ et al.
  • Neuroscience research‎
  • 2013‎

This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research.


Localization of peroxisome proliferator-activated receptor alpha (PPARα) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) in cells expressing the Ca(2+)-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus.

  • Patricia Rivera‎ et al.
  • Frontiers in neuroanatomy‎
  • 2014‎

The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca(2+) fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca(2+)-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα(+)/calbindin(+) cells were closely surrounded by NAPE-PLD(+) fiber varicosities. No pyramidal PPARα(+)/calbindin(+) cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD(+)/calretinin(+) cells were specifically detected in CA3. NAPE-PLD(+) puncta surrounded the calretinin(+) cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions.


Oleoylethanolamide restores alcohol-induced inhibition of neuronal proliferation and microglial activity in striatum.

  • Patricia Rivera‎ et al.
  • Neuropharmacology‎
  • 2019‎

Previous findings demonstrate a homeostatic role for oleoylethanolamide (OEA) signaling in the ethanol-related neuroinflammation and behavior. However, extensive research is still required in order to unveil the effects of OEA on a number of neurobiological functions such as adult neurogenesis, cell survival and resident neuroimmunity that become notably altered by alcohol. Daily consumption of ethanol (10%) for 2 weeks (6.3 ± 1.1 g/kg/day during last 5 days) caused hypolocomotor activity in rats. This effect appears to rely on central signaling mechanisms given that alcohol increased the OEA levels, the gene expression of OEA-synthesizing enzyme Nape-pld and the number of PPARα-immunoreactive neurons in the striatum. Ethanol-related neurobiological alterations such as a reduction in the number of microglial cells expressing iNOS (a cytokine-inducible immune defense) and in adult neural stem/progenitor cell (NSPC) proliferation (phospho-H3 and BrdU) and maturation (BrdU/β3-tubulin), as well as an increase in damage cell activity (FosB) and apoptosis (cleaved caspase 3) were also observed in the rat striatum. Pharmacological administration of OEA (10 mg/kg) for 5 days during ethanol exposure exacerbated ethanol-induced hypolocomotion and cell apoptosis in the striatum. Interestingly, OEA abrogated the impaired effects of ethanol on PPARα-positive cell population and NSPC proliferation and maturation. OEA also decreased astrocyte-related vimentin immunoreactivity and increased microglial cell population (Iba-1, iNOS) in the striatum. These results suggest that OEA-PPARα signaling modulates glial activation, cell apoptosis and NSPC proliferation and maturation in response to striatal-specific neurobiological alterations induced by prolonged ethanol intake in rats.


Neuronal Damage Induced by Perinatal Asphyxia Is Attenuated by Postinjury Glutaredoxin-2 Administration.

  • Juan Ignacio Romero‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2017‎

The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury.


Cell survival and differentiation with nanocrystalline glass-like carbon using substantia nigra dopaminergic cells derived from transgenic mouse embryos.

  • Noela Rodriguez-Losada‎ et al.
  • PloS one‎
  • 2017‎

Regenerative medicine requires, in many cases, physical supports to facilitate appropriate cellular architecture, cell polarization and the improvement of the correct differentiation processes of embryonic stem cells, induced pluripotent cells or adult cells. Because the interest in carbon nanomaterials has grown within the last decade in light of a wide variety of applications, the aim of this study was to test and evaluate the suitability and cytocompatibility of a particular nanometer-thin nanocrystalline glass-like carbon film (NGLC) composed of curved graphene flakes joined by an amorphous carbon matrix. This material is a disordered structure with high transparency and electrical conductivity. For this purpose, we used a cell line (SN4741) from substantia nigra dopaminergic cells derived from transgenic mouse embryos. Cells were cultured either in a powder of increasing concentrations of NGLC microflakes (82±37μm) in the medium or on top of nanometer-thin films bathed in the same culture medium. The metabolism activity of SN4741 cells in presence of NGLC was assessed using methylthiazolyldiphenyl-tetrazolium (MTT) and apoptosis/necrosis flow cytometry assay respectively. Growth and proliferation as well as senescence were demonstrated by western blot (WB) of proliferating cell nuclear antigen (PCNA), monoclonal phosphorylate Histone 3 (serine 10) (PH3) and SMP30 marker. Specific dopaminergic differentiation was confirmed by the WB analysis of tyrosine hydroxylase (TH). Cell maturation and neural capability were characterized using specific markers (SYP: synaptophysin and GIRK2: G-protein-regulated inward-rectifier potassium channel 2 protein) via immunofluorescence and coexistence measurements. The results demonstrated cell positive biocompatibility with different concentrations of NGLC. The cells underwent a process of adaptation of SN4741 cells to NGLC where their metabolism decreases. This process is related to a decrease of PH3 expression and significant increase SMP30 related to senescence processes. After 7 days, the cells increased the expression of TH and PCNA that is related to processes of DNA replication. On the other hand, cells cultured on top of the film showed axonal-like alignment, edge orientation, and network-like images after 7 days. Neuronal capability was demonstrated to a certain extent through the analysis of significant coexistence between SYP and GIRK2. Furthermore, we found a direct relationship between the thickness of the films and cell maturation. Although these findings share certain similarities to our previous findings with graphene oxide and its derivatives, this particular nanomaterial possesses the advantages of high conductivity and transparency. In conclusion, NGLC could represent a new platform for biomedical applications, such as for use in neural tissue engineering and biocompatible devices.


Anatomical location of LPA1 activation and LPA phospholipid precursors in rodent and human brain.

  • Estibaliz González de San Román‎ et al.
  • Journal of neurochemistry‎
  • 2015‎

Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors: LPA1 -LPA6 . LPA evokes several responses in the CNS, including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation, and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1 -null mice (a variant of LPA1 -null) lack [(35) S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides and phosphatidylcholines. Both phosphatides and phosphatidylcholines species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCR), LPA1 to LPA6 . LPA evokes several responses in the central nervous system (CNS), including cortical development and folding, growth of the axonal cone and its retraction process. We used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 -binding sites in adult rodent and human brain. The distribution of LPA1 receptors in rat, mouse and human brains show the highest activity in white matter myelinated areas. The basal and LPA-evoked activities are abolished in MaLPA1 -null mice. The phospholipid precursors of LPA are localized by MALDI-IMS. The anatomical distribution of LPA precursors in rodent and human brain suggests a relationship with functional LPA1 receptors.


Life-long environmental enrichment counteracts spatial learning, reference and working memory deficits in middle-aged rats subjected to perinatal asphyxia.

  • Pablo Galeano‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2014‎

Continuous environmental stimulation induced by exposure to enriched environment (EE) has yielded cognitive benefits in different models of brain injury. Perinatal asphyxia results from a lack of oxygen supply to the fetus and is associated with long-lasting neurological deficits. However, the effects of EE in middle-aged rats suffering perinatal asphyxia are unknown. Therefore, the aim of the present study was to assess whether life-long exposure to EE could counteract the cognitive and behavioral alterations in middle-aged asphyctic rats. Experimental groups consisted of rats born vaginally (CTL), by cesarean section (C+), or by C+ following 19 min of asphyxia at birth (PA). At weaning, rats were assigned to standard (SE) or enriched environment (EE) for 18 months. During the last month of housing, animals were submitted to a behavioral test battery including Elevated Plus Maze, Open Field, Novel Object Recognition and Morris water maze (MWM). Results showed that middle-aged asphyctic rats, reared in SE, exhibited an impaired performance in the spatial reference and working memory versions of the MWM. EE was able to counteract these cognitive impairments. Moreover, EE improved the spatial learning performance of middle-aged CTL and C+ rats. On the other hand, all groups reared in SE did not differ in locomotor activity and anxiety levels, while EE reduced locomotion and anxiety, regardless of birth condition. Recognition memory was altered neither by birth condition nor by housing environment. These results support the importance of environmental stimulation across the lifespan to prevent cognitive deficits induced by perinatal asphyxia.


Aggravation of chronic stress effects on hippocampal neurogenesis and spatial memory in LPA₁ receptor knockout mice.

  • Estela Castilla-Ortega‎ et al.
  • PloS one‎
  • 2011‎

The lysophosphatidic acid LPA₁ receptor regulates plasticity and neurogenesis in the adult hippocampus. Here, we studied whether absence of the LPA₁ receptor modulated the detrimental effects of chronic stress on hippocampal neurogenesis and spatial memory.


1-Oleoyl lysophosphatidic acid: a new mediator of emotional behavior in rats.

  • Estela Castilla-Ortega‎ et al.
  • PloS one‎
  • 2014‎

The role of lysophosphatidic acid (LPA) in the control of emotional behavior remains to be determined. We analyzed the effects of the central administration of 1-oleoyl-LPA (LPA 18∶1) in rats tested for food consumption and anxiety-like and depression-like behaviors. For this purpose, the elevated plus-maze, open field, Y maze, forced swimming and food intake tests were performed. In addition, c-Fos expression in the dorsal periaqueductal gray matter (DPAG) was also determined. The results revealed that the administration of LPA 18∶1 reduced the time in the open arms of the elevated plus-maze and induced hypolocomotion in the open field, suggesting an anxiogenic-like phenotype. Interestingly, these effects were present following LPA 18∶1 infusion under conditions of novelty but not under habituation conditions. In the forced swimming test, the administration of LPA 18∶1 dose-dependently increased depression-like behavior, as evaluated according to immobility time. LPA treatment induced no effects on feeding. However, the immunohistochemical analysis revealed that LPA 18∶1 increased c-Fos expression in the DPAG. The abundant expression of the LPA1 receptor, one of the main targets for LPA 18∶1, was detected in this brain area, which participates in the control of emotional behavior, using immunocytochemistry. These findings indicate that LPA is a relevant transmitter potentially involved in normal and pathological emotional responses, including anxiety and depression.


Pharmacological activation of CB2 receptors counteracts the deleterious effect of ethanol on cell proliferation in the main neurogenic zones of the adult rat brain.

  • Patricia Rivera‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2015‎

Chronic alcohol exposure reduces endocannabinoid activity and disrupts adult neurogenesis in rodents, which results in structural and functional alterations. Cannabinoid receptor agonists promote adult neural progenitor cell (NPC) proliferation. We evaluated the protective effects of the selective CB1 receptor agonist ACEA, the selective CB2 receptor agonist JWH133 and the fatty-acid amide-hydrolase (FAAH) inhibitor URB597, which enhances endocannabinoid receptor activity, on NPC proliferation in rats with forced consumption of ethanol (10%) or sucrose liquid diets for 2 weeks. We performed immunohistochemical and stereological analyses of cells expressing the mitotic phosphorylation of histone-3 (phospho-H3+) and the replicating cell DNA marker 5-bromo-2'-deoxyuridine (BrdU+) in the main neurogenic zones of adult brain: subgranular zone of dentate gyrus (SGZ), subventricular zone of lateral ventricles (SVZ) and hypothalamus. Animals were allowed ad libitum ethanol intake (7.3 ± 1.1 g/kg/day) after a controlled isocaloric pair-feeding period of sucrose and alcoholic diets. Alcohol intake reduced the number of BrdU+ cells in SGZ, SVZ, and hypothalamus. The treatments (URB597, ACEA, JWH133) exerted a differential increase in alcohol consumption over time, but JWH133 specifically counteracted the deleterious effect of ethanol on NPC proliferation in the SVZ and SGZ, and ACEA reversed this effect in the SGZ only. JWH133 also induced an increased number of BrdU+ cells expressing neuron-specific β3-tubulin in the SVZ and SGZ. These results indicated that the specific activation of CB2 receptors rescued alcohol-induced impaired NPC proliferation, which is a potential clinical interest for the risk of neural damage in alcohol dependence.


Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus.

  • Eduardo Blanco‎ et al.
  • European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology‎
  • 2016‎

In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could contribute to the specifically increased GluN1 expression observed in the hippocampus of cocaine-sensitized mice.


Oleoylethanolamide and Palmitoylethanolamide Protect Cultured Cortical Neurons Against Hypoxia.

  • Manuel Portavella‎ et al.
  • Cannabis and cannabinoid research‎
  • 2018‎

Introduction: Perinatal hypoxic-ischemic (HI) encephalopathy is defined as a neurological syndrome where the newborn suffers from acute ischemia and hypoxia during the perinatal period. New therapies are needed. The acylethanolamides, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), possess neuroprotective properties, and they could be effective against perinatal HI. These lipid mediators act through peroxisome proliferator-activated receptors subtype α (PPARα), or transient receptor potential vanilloid (TRPV), such as TRPV subtype 1 and 4. Materials and Methods: The objectives of this study were to discern: (1) the neuroprotective role of OEA and PEA in parietotemporal cortical neurons of newborn rats and mice subjected to hypoxia, and (2) the role of the receptors, PPARα, TRPV1, and TRPV4, in neuroprotective effects. Cell culture of cortical neurons and the lactate dehydrogenase assay was carried out. The role of receptors was discerned by using selective antagonist and agonist ligands, as well as knockout (KO) PPARα mice. Results: The findings indicate that OEA and PEA exert neuroprotective effects on cultured cortical neurons subjected to a hypoxic episode. These protective effects are not mediated by the receptors, PPARα, TRPV1, or TRPV4, because neither PPARα KO mice nor receptor ligands significantly modify OEA and PEA-induced effects. Blocking TRPV4 with RN1734 is neuroprotective per se, and cotreatment with OEA and PEA is able to enhance neuroprotective effects of the acylethanolamides. Since stimulating TRPV4 was devoid of effects on OEA and PEA-induced protective effects, effects of RN1734 cotreatment seem to be a consequence of additive actions. Conclusion: The lipid mediators, OEA and PEA, exert neuroprotective effects on cultured cortical neurons subjected to hypoxia. Coadministration of OEA or PEA, and the TRPV4 antagonist RN1734 is able to enhance neuroprotective effects. These in vitro results could be of utility for developing new therapeutic tools against perinatal HI.


CB1 and LPA1 Receptors Relationship in the Mouse Central Nervous System.

  • Estíbaliz González de San Román‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2019‎

Neurolipids are a class of bioactive lipids that are produced locally through specific biosynthetic pathways in response to extracellular stimuli. Neurolipids are important endogenous regulators of neural cell proliferation, differentiation, oxidative stress, inflammation and apoptosis. Endocannabinoids (eCBs) and lysophosphatidic acid (LPA) are examples of this type of molecule and are involved in neuroprotection. The present study analyzes a possible relationship of the main receptor subtypes for both neurolipid systems that are present in the central nervous system, the CB1 and LPA1 receptors, by using brain slices from CB1 KO mice and LPA1-null mice. Receptor-mediated G protein activation and glycerophospholipid regulation of potential precursors of their endogenous neurotransmitters were measured by two different in vitro imaging techniques, functional autoradiography and imaging mass spectrometry (IMS), respectively. Possible crosstalk between CB1 and LPA1 receptors was identified in specific areas of the brain, such as the amygdala, where LPA1 receptor activity is upregulated in CB1 KO mice. More evidence of an interaction between both systems was that the CB1-mediated activity was clearly increased in the prefrontal cortex and cerebellum of LPA1-null mice. The eCB system was specifically over-activated in regions where LPA1 has an important signaling role during embryonic development. The modifications on phospholipids (PLs) observed in these genetically modified mice by using the IMS technique indicated the regulation of some of the PL precursors of both LPA and eCBs in specific brain areas. For example, phosphatidylcholine (PC) (36:1) was detected as a potential LPA precursor, and phosphatidylethanolamine (PE) (40:6) and PE (p18:0/22:6) as potential eCB precursors. The absence of the main cerebral receptors for LPA or eCB systems is able to induce modulation on the other at the levels of both signaling and synthesis of endogenous neurotransmitters, indicating adaptive responses between both systems during prenatal and/or postnatal development.


Longitudinal analysis of the behavioral phenotype in a novel transgenic rat model of early stages of Alzheimer's disease.

  • Pablo Galeano‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2014‎

Intraneuronal accumulation of amyloid β (iAβ) has been linked to mild cognitive impairment that may precede Alzheimer's disease (AD) onset. This neuropathological trait was recently mimicked in a novel animal model of AD, the hemizygous transgenic McGill-R-Thy1-APP (Tg(+/-)) rat. The characterization of the behavioral phenotypes in this animal model could provide a baseline of efficacy for earlier therapeutic interventions. The aim of the present study was to undertake a longitudinal study of Aβ accumulation and a comprehensive behavioral evaluation of this transgenic rat model. We assessed exploratory activity, anxiety-related behaviors, recognition memory, working memory, spatial learning and reference memory at 3, 6, and 12 months of age. In parallel, we measured Aβ by ELISA, Western blots and semiquantitative immunohistochemistry in hippocampal samples. SDS-soluble Aβ peptide accumulated at low levels (~9 pg/mg) without differences among ages. However, Western blots showed SDS-resistant Aβ oligomers (~30 kDa) at 6 and 12 months, but not at 3 months. When compared to wild-type (WT), male Tg(+/-) rats exhibited a spatial reference memory deficit in the Morris Water Maze (MWM) as early as 3 months of age, which persisted at 6 and 12 months. In addition, Tg(+/-) rats displayed a working memory impairment in the Y-maze and higher anxiety levels in the Open Field (OF) at 6 and 12 months of age, but not at 3 months. Exploratory activity in the OF was similar to that of WT at all-time points. Spatial learning in the MWM and the recognition memory, as assessed by the Novel Object Recognition Test, were unimpaired at any time point. The data from the present study demonstrate that the hemizygous transgenic McGill-R-Thy1-APP rat has a wide array of behavioral and cognitive impairments from young adulthood to middle-age. The low Aβ burden and early emotional and cognitive deficits in this transgenic rat model supports its potential use for drug discovery purposes in early AD.


Affective modulation of the startle reflex and the Reinforcement Sensitivity Theory of personality: The role of sensitivity to reward.

  • Anton Aluja‎ et al.
  • Physiology & behavior‎
  • 2015‎

This study evaluated differences in the amplitude of startle reflex and Sensitivity to Reward (SR) and Sensitivity to Punishment (SP) personality variables of the Reinforcement Sensitivity Theory (RST). We hypothesized that subjects with higher scores in SR would obtain a higher startle reflex when exposed to pleasant pictures than lower scores, while higher scores in SP would obtain a higher startle reflex when exposed to unpleasant pictures than subjects with lower scores in this dimension. The sample consisted of 112 healthy female undergraduate psychology students. Personality was assessed using the short version of the Sensitivity to Punishment and Sensitivity Reward Questionnaire (SPSRQ). Laboratory anxiety was controlled by the State Anxiety Inventory. The startle blink reflex was recorded electromyographically (EMG) from the right orbicularis oculi muscle as a response to the International Affective Picture System (IAPS) pleasant, neutral and unpleasant pictures. Subjects higher in SR obtained a significant higher startle reflex response in pleasant pictures than lower scorers (48.48 vs 46.28, p<0.012). Subjects with higher scores in SP showed a light tendency of higher startle responses in unpleasant pictures in a non-parametric local regression graphical analysis (LOESS). The findings shed light on the relationships among the impulsive-disinhibited personality, including sensitivity to reward and emotions evoked through pictures of emotional content.


Fe3O4-TiO2 Thin Films in Solar Photocatalytic Processes.

  • Almudena Aguinaco‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2022‎

The optical properties of 5wt% Fe3O4-TiO2 thin films were evaluated in detail with the aim of proposing a mechanism for solar photocatalytic processes and highlighting the advantages over the use of bare TiO2. The results showed that the incorporation of 5wt% Fe3O4 enhanced the optical properties by a redshift to a wavelength in the visible range, reducing the anatase/rutile band gap energy from 3.2 eV to 2.8 eV. Photoluminescence studies reveal a superior separation efficiency of photoexcited electron-hole pairs when Fe3O4 nanoparticles (NPs) are present in the photocatalyst. X-ray photoelectron spectroscopy spectra confirm the presence of Fe3O4 and existence of a chemical bonding between TiO2 and Fe3O4 NPs. Moreover, in this study, a mechanism of solar photocatalytic processes involving Fe3O4-TiO2 thin films is proposed and it is supported by experimental results. Finally, solar photocatalytic experiments were carried out, indicating that the effectiveness for the removal of the selected pharmaceutical is considerably improved when the composite material is used as catalyst. Furthermore, it was demonstrated that the photocatalytic activity of the prepared Fe3O4-TiO2 thin films depends on their thickness, achieving the highest pharmaceutical removal yields using the 2 µm thick sample. The stability and reusability of the catalyst was confirmed studying the photocatalytic activity over three cycles.


Glutaminase and MMP-9 Downregulation in Cortex and Hippocampus of LPA1 Receptor Null Mice Correlate with Altered Dendritic Spine Plasticity.

  • Ana Peñalver‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2017‎

Lysophosphatidic acid (LPA) is an extracellular lipid mediator that regulates nervous system development and functions acting through G protein-coupled receptors (GPCRs). Here we explore the crosstalk between LPA1 receptor and glutamatergic transmission by examining expression of glutaminase (GA) isoforms in different brain areas isolated from wild-type (WT) and KOLPA1 mice. Silencing of LPA1 receptor induced a severe down-regulation of Gls-encoded long glutaminase protein variant (KGA) (glutaminase gene encoding the kidney-type isoforms, GLS) protein expression in several brain regions, particularly in brain cortex and hippocampus. Immunohistochemical assessment of protein levels for the second type of glutaminase (GA) isoform, glutaminase gene encoding the liver-type isoforms (GLS2), did not detect substantial differences with regard to WT animals. The regional mRNA levels of GLS were determined by real time RT-PCR and did not show significant variations, except for prefrontal and motor cortex values which clearly diminished in KO mice. Total GA activity was also significantly reduced in prefrontal and motor cortex, but remained essentially unchanged in the hippocampus and rest of brain regions examined, suggesting activation of genetic compensatory mechanisms and/or post-translational modifications to compensate for KGA protein deficit. Remarkably, Golgi staining of hippocampal regions showed an altered morphology of glutamatergic pyramidal cells dendritic spines towards a less mature filopodia-like phenotype, as compared with WT littermates. This structural change correlated with a strong decrease of active matrix-metalloproteinase (MMP) 9 in cerebral cortex and hippocampus of KOLPA1 mice. Taken together, these results demonstrate that LPA signaling through LPA1 influence expression of the main isoenzyme of glutamate biosynthesis with strong repercussions on dendritic spines maturation, which may partially explain the cognitive and learning defects previously reported for this colony of KOLPA1 mice.


Mesenchymal properties of SJL mice-stem cells and their efficacy as autologous therapy in a relapsing-remitting multiple sclerosis model.

  • Carmen Marin-Bañasco‎ et al.
  • Stem cell research & therapy‎
  • 2014‎

Mesenchymal stem cells (MSCs) are a multipotent population of adult stem cells, which may represent a promising therapeutic approach for neurological autoimmune diseases such as multiple sclerosis. The mouse is the most used species for obtaining and studying the characteristics of MSC and their potential as autologous transplants in pre-clinical models. However, conflicting data have been published disclosing intraspecies variations. The choice of the mouse strain and the tissue source appear, among others, as important factors in the experimental application of MSCs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: