Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 38 papers

Structural and Functional Brain Correlates of Cognitive Impairment in Euthymic Patients with Bipolar Disorder.

  • Silvia Alonso-Lana‎ et al.
  • PloS one‎
  • 2016‎

Cognitive impairment in the euthymic phase is a well-established finding in bipolar disorder. However, its brain structural and/or functional correlates are uncertain.


Abnormalities in gray matter volume in patients with borderline personality disorder and their relation to lifetime depression: A VBM study.

  • Salvatore Aguilar-Ortiz‎ et al.
  • PloS one‎
  • 2018‎

Structural imaging studies of borderline personality disorder (BPD) have found regions of reduced cortical volume, but these have varied considerably across studies. Reduced hippocampus and amygdala volume have also been a regular finding in studies using conventional volumetric measurement. How far comorbid major depression, which is common in BPD and can also affect in brain structure, influences the findings is not clear.


Fingerprints as Predictors of Schizophrenia: A Deep Learning Study.

  • Raymond Salvador‎ et al.
  • Schizophrenia bulletin‎
  • 2023‎

The existing developmental bond between fingerprint generation and growth of the central nervous system points to a potential use of fingerprints as risk markers in schizophrenia. However, the high complexity of fingerprints geometrical patterns may require flexible algorithms capable of characterizing such complexity.


Virtual Ontogeny of Cortical Growth Preceding Mental Illness.

  • Yash Patel‎ et al.
  • Biological psychiatry‎
  • 2022‎

Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life.


Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium.

  • Dick Schijven‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia.


Widespread intra-axonal signal fraction abnormalities in bipolar disorder from multicompartment diffusion MRI: Sensitivity to diagnosis, association with clinical features and pharmacologic treatment.

  • Erick Jorge Canales-Rodríguez‎ et al.
  • Human brain mapping‎
  • 2023‎

Despite diffusion tensor imaging (DTI) evidence for widespread fractional anisotropy (FA) reductions in the brain white matter of patients with bipolar disorder, questions remain regarding the specificity and sensitivity of FA abnormalities as opposed to other diffusion metrics in the disorder. We conducted a whole-brain voxel-based multicompartment diffusion MRI study on 316 participants (i.e., 158 patients and 158 matched healthy controls) employing four diffusion metrics: the mean diffusivity (MD) and FA estimated from DTI, and the intra-axonal signal fraction (IASF) and microscopic axonal parallel diffusivity (Dpar) derived from the spherical mean technique. Our findings provide novel evidence about widespread abnormalities in other diffusion metrics in BD. An extensive overlap between the FA and IASF results suggests that the lower FA in patients may be caused by a reduced intra-axonal volume fraction or a higher macromolecular content in the intra-axonal water. We also found a diffuse alteration in MD involving white and grey matter tissue and more localised changes in Dpar. A Machine Learning analysis revealed that FA, followed by IASF, were the most helpful metric for the automatic diagnosis of BD patients, reaching an accuracy of 72%. Number of mood episodes, age of onset/duration of illness, psychotic symptoms, and current treatment with lithium, antipsychotics, antidepressants, and antiepileptics were all significantly associated with microstructure abnormalities. Lithium treatment was associated with less microstructure abnormality.


Human-specific evolutionary markers linked to foetal neurodevelopment modulate brain surface area in schizophrenia.

  • Maria Guardiola-Ripoll‎ et al.
  • Communications biology‎
  • 2023‎

Schizophrenia may represent a trade-off in the evolution of human-specific ontogenetic mechanisms that guide neurodevelopment. Human Accelerated Regions (HARs) are evolutionary markers functioning as neurodevelopmental transcription enhancers that have been associated with brain configuration, neural information processing, and schizophrenia risk. Here, we have investigated the influence of HARs' polygenic load on neuroanatomical measures through a case-control approach (128 patients with schizophrenia and 115 controls). To this end, we have calculated the global schizophrenia Polygenic Risk Score (Global PRSSZ) and that specific to HARs (HARs PRSSZ). We have also estimated the polygenic burden restricted to the HARs linked to transcriptional regulatory elements active in the foetal brain (FB-HARs PRSSZ) and the adult brain (AB-HARs PRSSZ). We have explored the main effects of the PRSs and the PRSs x diagnosis interactions on brain regional cortical thickness (CT) and surface area (SA). The results indicate that a higher FB-HARs PRSSZ is associated with patients' lower SA in the lateral orbitofrontal cortex, the superior temporal cortex, the pars triangularis and the paracentral lobule. While noHARs-derived PRSs show an effect on the risk, our neuroanatomical findings suggest that the human-specific transcriptional regulation during the prenatal period underlies SA variability, highlighting the role of these evolutionary markers in the schizophrenia genomic architecture.


Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies.

  • Joaquim Radua‎ et al.
  • Frontiers in psychiatry‎
  • 2014‎

Peak-based meta-analyses of neuroimaging studies create, for each study, a brain map of effect size or peak likelihood by convolving a kernel with each reported peak. A kernel is a small matrix applied in order that voxels surrounding the peak have a value similar to, but slightly lower than that of the peak. Current kernels are isotropic, i.e., the value of a voxel close to a peak only depends on the Euclidean distance between the voxel and the peak. However, such perfect spheres of effect size or likelihood around the peak are rather implausible: a voxel that correlates with the peak across individuals is more likely to be part of the cluster of significant activation or difference than voxels uncorrelated with the peak. This paper introduces anisotropic kernels, which assign different values to the different neighboring voxels based on the spatial correlation between them. They are specifically developed for effect-size signed differential mapping (ES-SDM), though might be easily implemented in other meta-analysis packages such as activation likelihood estimation (ALE). The paper also describes the creation of the required correlation templates for gray matter/BOLD response, white matter, cerebrospinal fluid, and fractional anisotropy. Finally, the new method is validated by quantifying the accuracy of the recreation of effect size maps from peak information. This empirical validation showed that the optimal degree of anisotropy and full-width at half-maximum (FWHM) might vary largely depending on the specific data meta-analyzed. However, it also showed that the recreation substantially improved and did not depend on the FWHM when full anisotropy was used. Based on these results, we recommend the use of fully anisotropic kernels in ES-SDM and ALE, unless optimal meta-analysis-specific parameters can be estimated based on the recreation of available statistical maps. The new method and templates are freely available at http://www.sdmproject.com/.


Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis.

  • Raymond Salvador‎ et al.
  • PloS one‎
  • 2017‎

A relatively large number of studies have investigated the power of structural magnetic resonance imaging (sMRI) data to discriminate patients with schizophrenia from healthy controls. However, very few of them have also included patients with bipolar disorder, allowing the clinically relevant discrimination between both psychotic diagnostics. To assess the efficacy of sMRI data for diagnostic prediction in psychosis we objectively evaluated the discriminative power of a wide range of commonly used machine learning algorithms (ridge, lasso, elastic net and L0 norm regularized logistic regressions, a support vector classifier, regularized discriminant analysis, random forests and a Gaussian process classifier) on main sMRI features including grey and white matter voxel-based morphometry (VBM), vertex-based cortical thickness and volume, region of interest volumetric measures and wavelet-based morphometry (WBM) maps. All possible combinations of algorithms and data features were considered in pairwise classifications of matched samples of healthy controls (N = 127), patients with schizophrenia (N = 128) and patients with bipolar disorder (N = 128). Results show that the selection of feature type is important, with grey matter VBM (without data reduction) delivering the best diagnostic prediction rates (averaging over classifiers: schizophrenia vs. healthy 75%, bipolar disorder vs. healthy 63% and schizophrenia vs. bipolar disorder 62%) whereas algorithms usually yielded very similar results. Indeed, those grey matter VBM accuracy rates were not even improved by combining all feature types in a single prediction model. Further multi-class classifications considering the three groups simultaneously made evident a lack of predictive power for the bipolar group, probably due to its intermediate anatomical features, located between those observed in healthy controls and those found in patients with schizophrenia. Finally, we provide MRIPredict (https://www.nitrc.org/projects/mripredict/), a free tool for SPM, FSL and R, to easily carry out voxelwise predictions based on VBM images.


A comparison of various MRI feature types for characterizing whole brain anatomical differences using linear pattern recognition methods.

  • Gemma C Monté-Rubio‎ et al.
  • NeuroImage‎
  • 2018‎

There is a widespread interest in applying pattern recognition methods to anatomical neuroimaging data, but so far, there has been relatively little investigation into how best to derive image features in order to make the most accurate predictions. In this work, a Gaussian Process machine learning approach was used for predicting age, gender and body mass index (BMI) of subjects in the IXI dataset, as well as age, gender and diagnostic status using the ABIDE and COBRE datasets. MRI data were segmented and aligned using SPM12, and a variety of feature representations were derived from this preprocessing. We compared classification and regression accuracy using the different sorts of features, and with various degrees of spatial smoothing. Results suggested that feature sets that did not ignore the implicit background tissue class, tended to result in better overall performance, whereas some of the most commonly used feature sets performed relatively poorly.


Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium.

  • Theo G M van Erp‎ et al.
  • Biological psychiatry‎
  • 2018‎

The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group.


Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years.

  • Sophia Frangou‎ et al.
  • Human brain mapping‎
  • 2022‎

Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.


Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3-90 years.

  • Danai Dima‎ et al.
  • Human brain mapping‎
  • 2022‎

Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.


Two neurostructural subtypes: results of machine learning on brain images from 4,291 individuals with schizophrenia.

  • Yuchao Jiang‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

Machine learning can be used to define subtypes of psychiatric conditions based on shared clinical and biological foundations, presenting a crucial step toward establishing biologically based subtypes of mental disorders. With the goal of identifying subtypes of disease progression in schizophrenia, here we analyzed cross-sectional brain structural magnetic resonance imaging (MRI) data from 4,291 individuals with schizophrenia (1,709 females, age=32.5 years±11.9) and 7,078 healthy controls (3,461 females, age=33.0 years±12.7) pooled across 41 international cohorts from the ENIGMA Schizophrenia Working Group, non-ENIGMA cohorts and public datasets. Using a machine learning approach known as Subtype and Stage Inference (SuStaIn), we implemented a brain imaging-driven classification that identifies two distinct neurostructural subgroups by mapping the spatial and temporal trajectory of gray matter (GM) loss in schizophrenia. Subgroup 1 (n=2,622) was characterized by an early cortical-predominant loss (ECL) with enlarged striatum, whereas subgroup 2 (n=1,600) displayed an early subcortical-predominant loss (ESL) in the hippocampus, amygdala, thalamus, brain stem and striatum. These reconstructed trajectories suggest that the GM volume reduction originates in the Broca's area/adjacent fronto-insular cortex for ECL and in the hippocampus/adjacent medial temporal structures for ESL. With longer disease duration, the ECL subtype exhibited a gradual worsening of negative symptoms and depression/anxiety, and less of a decline in positive symptoms. We confirmed the reproducibility of these imaging-based subtypes across various sample sites, independent of macroeconomic and ethnic factors that differed across these geographic locations, which include Europe, North America and East Asia. These findings underscore the presence of distinct pathobiological foundations underlying schizophrenia. This new imaging-based taxonomy holds the potential to identify a more homogeneous sub-population of individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.


Cannabis Use and Endocannabinoid Receptor Genes: A Pilot Study on Their Interaction on Brain Activity in First-Episode Psychosis.

  • Maitane Oscoz-Irurozqui‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The role of both cannabis use and genetic background has been shown in the risk for psychosis. However, the effect of the interplay between cannabis and variability at the endocannabinoid receptor genes on the neurobiological underpinnings of psychosis remains inconclusive. Through a case-only design, including patients with a first-episode of psychosis (n = 40) classified as cannabis users (50%) and non-users (50%), we aimed to evaluate the interaction between cannabis use and common genetic variants at the endocannabinoid receptor genes on brain activity. Genetic variability was assessed by genotyping two Single Nucleotide Polymorphisms (SNP) at the cannabinoid receptor type 1 gene (CNR1; rs1049353) and cannabinoid receptor type 2 gene (CNR2; rs2501431). Functional Magnetic Resonance Imaging (fMRI) data were obtained while performing the n-back task. Gene × cannabis interaction models evidenced a combined effect of CNR1 and CNR2 genotypes and cannabis use on brain activity in different brain areas, such as the caudate nucleus, the cingulate cortex and the orbitofrontal cortex. These findings suggest a joint role of cannabis use and cannabinoid receptor genetic background on brain function in first-episode psychosis, possibly through the impact on brain areas relevant to the reward circuit.


Association between body mass index and subcortical brain volumes in bipolar disorders-ENIGMA study in 2735 individuals.

  • Sean R McWhinney‎ et al.
  • Molecular psychiatry‎
  • 2021‎

Individuals with bipolar disorders (BD) frequently suffer from obesity, which is often associated with neurostructural alterations. Yet, the effects of obesity on brain structure in BD are under-researched. We obtained MRI-derived brain subcortical volumes and body mass index (BMI) from 1134 BD and 1601 control individuals from 17 independent research sites within the ENIGMA-BD Working Group. We jointly modeled the effects of BD and BMI on subcortical volumes using mixed-effects modeling and tested for mediation of group differences by obesity using nonparametric bootstrapping. All models controlled for age, sex, hemisphere, total intracranial volume, and data collection site. Relative to controls, individuals with BD had significantly higher BMI, larger lateral ventricular volume, and smaller volumes of amygdala, hippocampus, pallidum, caudate, and thalamus. BMI was positively associated with ventricular and amygdala and negatively with pallidal volumes. When analyzed jointly, both BD and BMI remained associated with volumes of lateral ventricles  and amygdala. Adjusting for BMI decreased the BD vs control differences in ventricular volume. Specifically, 18.41% of the association between BD and ventricular volume was mediated by BMI (Z = 2.73, p = 0.006). BMI was associated with similar regional brain volumes as BD, including lateral ventricles, amygdala, and pallidum. Higher BMI may in part account for larger ventricles, one of the most replicated findings in BD. Comorbidity with obesity could explain why neurostructural alterations are more pronounced in some individuals with BD. Future prospective brain imaging studies should investigate whether obesity could be a modifiable risk factor for neuroprogression.


Age- and gender-related differences in brain tissue microstructure revealed by multi-component T2 relaxometry.

  • Erick Jorge Canales-Rodríguez‎ et al.
  • Neurobiology of aging‎
  • 2021‎

In spite of extensive work, inconsistent findings and lack of specificity in most neuroimaging techniques used to examine age- and gender-related patterns in brain tissue microstructure indicate the need for additional research. Here, we performed the largest Multi-component T2 relaxometry cross-sectional study to date in healthy adults (N = 145, 18-60 years). Five quantitative microstructure parameters derived from various segments of the estimated T2 spectra were evaluated, allowing a more specific interpretation of results in terms of tissue microstructure. We found similar age-related myelin water fraction (MWF) patterns in men and women but we also observed differential male related results including increased MWF content in a few white matter tracts, a faster decline with age of the intra- and extra-cellular water fraction and its T2 relaxation time (i.e. steeper age related negative slopes) and a faster increase in the free and quasi-free water fraction, spanning the whole grey matter. Such results point to a sexual dimorphism in brain tissue microstructure and suggest a lesser vulnerability to age-related changes in women.


Auditory hallucinations activate language and verbal short-term memory, but not auditory, brain regions.

  • Paola Fuentes-Claramonte‎ et al.
  • Scientific reports‎
  • 2021‎

Auditory verbal hallucinations (AVH, 'hearing voices') are an important symptom of schizophrenia but their biological basis is not well understood. One longstanding approach proposes that they are perceptual in nature, specifically that they reflect spontaneous abnormal neuronal activity in the auditory cortex, perhaps with additional 'top down' cognitive influences. Functional imaging studies employing the symptom capture technique-where activity when patients experience AVH is compared to times when they do not-have had mixed findings as to whether the auditory cortex is activated. Here, using a novel variant of the symptom capture technique, we show that the experience of AVH does not induce auditory cortex activation, even while real speech does, something that effectively rules out all theories that propose a perceptual component to AVH. Instead, we find that the experience of AVH activates language regions and/or regions that are engaged during verbal short-term memory.


Brain ageing in schizophrenia: evidence from 26 international cohorts via the ENIGMA Schizophrenia consortium.

  • Constantinos Constantinides‎ et al.
  • Molecular psychiatry‎
  • 2023‎

Schizophrenia (SZ) is associated with an increased risk of life-long cognitive impairments, age-related chronic disease, and premature mortality. We investigated evidence for advanced brain ageing in adult SZ patients, and whether this was associated with clinical characteristics in a prospective meta-analytic study conducted by the ENIGMA Schizophrenia Working Group. The study included data from 26 cohorts worldwide, with a total of 2803 SZ patients (mean age 34.2 years; range 18-72 years; 67% male) and 2598 healthy controls (mean age 33.8 years, range 18-73 years, 55% male). Brain-predicted age was individually estimated using a model trained on independent data based on 68 measures of cortical thickness and surface area, 7 subcortical volumes, lateral ventricular volumes and total intracranial volume, all derived from T1-weighted brain magnetic resonance imaging (MRI) scans. Deviations from a healthy brain ageing trajectory were assessed by the difference between brain-predicted age and chronological age (brain-predicted age difference [brain-PAD]). On average, SZ patients showed a higher brain-PAD of +3.55 years (95% CI: 2.91, 4.19; I2 = 57.53%) compared to controls, after adjusting for age, sex and site (Cohen's d = 0.48). Among SZ patients, brain-PAD was not associated with specific clinical characteristics (age of onset, duration of illness, symptom severity, or antipsychotic use and dose). This large-scale collaborative study suggests advanced structural brain ageing in SZ. Longitudinal studies of SZ and a range of mental and somatic health outcomes will help to further evaluate the clinical implications of increased brain-PAD and its ability to be influenced by interventions.


A meta-analysis of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the ENIGMA Consortium.

  • Boris A Gutman‎ et al.
  • Human brain mapping‎
  • 2022‎

Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: