Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Phospholamban ablation rescues the enhanced propensity to arrhythmias of mice with CaMKII-constitutive phosphorylation of RyR2 at site S2814.

  • G Mazzocchi‎ et al.
  • The Journal of physiology‎
  • 2016‎

Mice with Ca(2+) -calmodulin-dependent protein kinase (CaMKII) constitutive pseudo-phosphorylation of the ryanodine receptor RyR2 at Ser2814 (S2814D(+/+) mice) exhibit a higher open probability of RyR2, higher sarcoplasmic reticulum (SR) Ca(2+) leak in diastole and increased propensity to arrhythmias under stress conditions. We generated phospholamban (PLN)-deficient S2814D(+/+) knock-in mice by crossing two colonies, S2814D(+/+) and PLNKO mice, to test the hypothesis that PLN ablation can prevent the propensity to arrhythmias of S2814D(+/+) mice. PLN ablation partially rescues the altered intracellular Ca(2+) dynamics of S2814D(+/+) hearts and myocytes, but enhances SR Ca(2+) sparks and leak on confocal microscopy. PLN ablation diminishes ventricular arrhythmias promoted by CaMKII phosphorylation of S2814 on RyR2. PLN ablation aborts the arrhythmogenic SR Ca(2+) waves of S2814D(+/+) and transforms them into non-propagating events. A mathematical human myocyte model replicates these results and predicts the increase in SR Ca(2+) uptake required to prevent the arrhythmias induced by a CaMKII-dependent leaky RyR2.


Phospholamban regulation of bladder contractility: evidence from gene-altered mouse models.

  • K Nobe‎ et al.
  • The Journal of physiology‎
  • 2001‎

1. Phospholamban (PLB) is an inhibitor of the sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA). Its presence and/or functional significance in contractility of bladder, a smooth muscle tissue particularly dependent on SR function, is unknown. We investigated this by measuring the effects of carbachol (CCh) on force and [Ca2+]i in bladder from mice in which the PLB gene was ablated (PLB-KO mice). In the PLB-KO bladder, the maximum increases in [Ca2+]i and force were significantly decreased (41.5 and 47.4 % of WT), and the EC50 values increased. 2. Inhibition of SERCA with cyclopiazonic acid (CPA) abolished these differences between WT and PLB-KO bladder, localizing the effects to the SR. 3. To determine whether these effects were specific to PLB, we generated mice with smooth-muscle-specific expression of PLB (PLB-SMOE mice), using the SMP8 alpha-actin promoter. Western blot analysis of PLB-SMOE mice showed approximately an eightfold overexpression of PLB while SERCA was downregulated 12-fold. 4. In PLB-SMOE bladders, in contrast, the response of [Ca2+]i and force to CCh was significantly increased and the EC50 values were decreased. CPA had little affect on the CCh-induced increases in [Ca2+]i and force in PLB-SMOE bladder. 5. These results show that alteration of the PLB:SERCA ratio can significantly modulate smooth muscle [Ca2+]i. Importantly, our data show that PLB can play a major role in modulation of bladder contractility.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: