Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Pancreatic polypeptide enhances colonic muscle contraction and fecal output through neuropeptide Y Y4 receptor in mice.

  • Ryuichi Moriya‎ et al.
  • European journal of pharmacology‎
  • 2010‎

Pancreatic polypeptide is released mainly from the pancreas, and is thought to be one of the major endogenous agonists of the neuropeptide Y Y(4) receptor. Pancreatic polypeptide has been shown to stimulate colonic muscle contraction, but whether pancreatic polypeptide has in vivo functional activity with respect to colonic transit is unclear. The present report investigated the effects of pancreatic polypeptide on fecal output as an index of colonic transit as well as intestinal motor activity, using wild-type (WT) and neuropeptide Y Y(4) receptor-deficient (KO) mice. Peripheral administration of pancreatic polypeptide increased fecal weight and caused diarrhea in WT mice in a dose-dependent manner (0.01-3mg/kg s.c.). Pancreatic polypeptide-induced increases in fecal weight and diarrhea completely disappeared in KO mice, while basal fecal weights did not differ between WT and KO mice. In longitudinal and circular muscles of mouse isolated colon, pancreatic polypeptide (0.01-1 microM) increased basal tone and frequency of spontaneous contraction in WT mice, but not in KO mice. Atropine did not affect pancreatic polypeptide-induced fecal output or increase in colonic muscle tone, indicating that the actions of pancreatic polypeptide are not mediated through cholinergic mechanisms. The present findings demonstrate that pancreatic polypeptide enhances colonic contractile activity and fecal output through neuropeptide Y Y(4) receptor, and a neuropeptide Y Y(4) receptor agonist might offer a novel therapeutic approach to ameliorate constipation.


Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks.

  • Xia Yang‎ et al.
  • Nature genetics‎
  • 2009‎

A principal task in dissecting the genetics of complex traits is to identify causal genes for disease phenotypes. We previously developed a method to infer causal relationships among genes through the integration of DNA variation, gene transcription and phenotypic information. Here we have validated our method through the characterization of transgenic and knockout mouse models of genes predicted to be causal for abdominal obesity. Perturbation of eight out of the nine genes, with Gas7, Me1 and Gpx3 being newly confirmed, resulted in significant changes in obesity-related traits. Liver expression signatures revealed alterations in common metabolic pathways and networks contributing to abdominal obesity and overlapped with a macrophage-enriched metabolic network module that is highly associated with metabolic traits in mice and humans. Integration of gene expression in the design and analysis of traditional F(2) intercross studies allows high-confidence prediction of causal genes and identification of pathways and networks involved.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: