Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 42 papers

Subchronic inhalation toxicity of gold nanoparticles.

  • Jae Hyuck Sung‎ et al.
  • Particle and fibre toxicology‎
  • 2011‎

Gold nanoparticles are widely used in consumer products, including cosmetics, food packaging, beverages, toothpaste, automobiles, and lubricants. With this increase in consumer products containing gold nanoparticles, the potential for worker exposure to gold nanoparticles will also increase. Only a few studies have produced data on the in vivo toxicology of gold nanoparticles, meaning that the absorption, distribution, metabolism, and excretion (ADME) of gold nanoparticles remain unclear.


Hyperthermic preconditioning severely accelerates neuronal damage in the gerbil ischemic hippocampal dentate gyrus via decreasing SODs expressions.

  • Dong Won Kim‎ et al.
  • Journal of the neurological sciences‎
  • 2015‎

It is well known that neurons in the dentate gyrus (DG) of the hippocampus are resistant to short period of ischemia. Hyperthermia is a proven risk factor for cerebral ischemia and can produce more extensive brain damage related with mortality rates. The aim of this study was to examine the effect of hyperthermic conditioning (H) on neuronal death, gliosis and expressions of SODs as anti-oxidative enzymes in the gerbil DG following 5 min-transient cerebral ischemia. The animals were randomly assigned to 4 groups: 1) (N+sham)-group was given sham-operation with normothermia (N); 2) (N+ischemia)-group was given 5 min-transient ischemia with N; 3) (H+sham)-group was given sham-operation with H; and 4) (H+ischemia)-group was given 5 min-transient cerebral ischemia with H. H (39±0.5°C) was induced by subjecting the animals to a heating pad for 30 min before and during the operation. In the (N+ischemia)-groups, a significant neuronal death was observed in the polymorphic layer (PL) from 1 day after ischemia-reperfusion. In the (H+ischemia)-groups, neuronal death was also observed in the PL from 1day post-ischemia; the degree of the neuronal death was severer than that in the (N+ischemia)-groups. In addition, we examined the gliosis of astrocytes and microglia using anti-glial fibrillary acidic protein (GFAP) and anti- ionized calcium-binding adapter molecule 1 (Iba-1). GFAP(+) and Iba-1(+) glial cells were much more activated in the (H+ischemia)-groups than those in the (N+ischemia)-groups. On the other hand, immunoreactivities and levels of SOD1 rather than SOD2 were significantly lower in the (H+ischemia)-groups than those in the (N+ischemia)-groups. In brief, on the basis of our findings, we suggest that cerebral ischemic insult with hyperthermic conditioning brings up severer neuronal damage and gliosis in the polymorphic layer through reducing SOD1 expression rather than SOD2 expression in the DG.


Effects of acute normovolemic hemodilution on healing of gastric anastomosis in rats.

  • Tae Yeon Kim‎ et al.
  • Annals of surgical treatment and research‎
  • 2018‎

Acute normovolemic hemodilution (ANH) is an autologous transfusion method, using blood collected during surgery, to reduce the need for allogeneic blood transfusion. ANH is controversial because it may lead to various complications. Among the possible complications, anastomotic leakage is one that would have a significant effect on the operation outcome. However, the relationship between ANH and anastomotic site healing requires additional research. Therefore, we conducted this prospective study of ANH, comparing it with standard intraoperative management, undergoing gastric anastomosis in rats.


Single-cell analysis of early chick hypothalamic development reveals that hypothalamic cells are induced from prethalamic-like progenitors.

  • Dong Won Kim‎ et al.
  • Cell reports‎
  • 2022‎

The hypothalamus regulates many innate behaviors, but its development remains poorly understood. Here, we used single-cell RNA sequencing (RNA-seq) and hybridization chain reaction (HCR) to profile multiple stages of early hypothalamic development in the chick. Hypothalamic neuroepithelial cells are initially induced from prethalamic-like cells. Two distinct hypothalamic progenitor populations then emerge and give rise to tuberal and mammillary/paraventricular hypothalamic cells. At later stages, the regional organization of the chick and mouse hypothalamus is highly similar. We identify selective markers for major subdivisions of the developing chick hypothalamus and many previously uncharacterized candidate regulators of hypothalamic induction, regionalization, and neurogenesis. As proof of concept for the power of the dataset, we demonstrate that prethalamus-derived follistatin inhibits hypothalamic induction. This study clarifies the organization of the nascent hypothalamus and identifies molecular mechanisms that may control its induction and subsequent development.


The maize gene maternal derepression of r1 encodes a DNA glycosylase that demethylates DNA and reduces siRNA expression in the endosperm.

  • Jonathan I Gent‎ et al.
  • The Plant cell‎
  • 2022‎

Demethylation of transposons can activate the expression of nearby genes and cause imprinted gene expression in the endosperm; this demethylation is hypothesized to lead to expression of transposon small interfering RNAs (siRNAs) that reinforce silencing in the next generation through transfer either into egg or embryo. Here we describe maize (Zea mays) maternal derepression of r1 (mdr1), which encodes a DNA glycosylase with homology to Arabidopsis thaliana DEMETER and which is partially responsible for demethylation of thousands of regions in endosperm. Instead of promoting siRNA expression in endosperm, MDR1 activity inhibits it. Methylation of most repetitive DNA elements in endosperm is not significantly affected by MDR1, with an exception of Helitrons. While maternally-expressed imprinted genes preferentially overlap with MDR1 demethylated regions, the majority of genes that overlap demethylated regions are not imprinted. Double mutant megagametophytes lacking both MDR1 and its close homolog DNG102 result in early seed failure, and double mutant microgametophytes fail pre-fertilization. These data establish DNA demethylation by glycosylases as essential in maize endosperm and pollen and suggest that neither transposon repression nor genomic imprinting is its main function in endosperm.


Integration of National Health Insurance claims data and animal models reveals fexofenadine as a promising repurposed drug for Parkinson's disease.

  • Jae-Bong Kim‎ et al.
  • Journal of neuroinflammation‎
  • 2024‎

Parkinson's disease (PD) is a common and costly progressive neurodegenerative disease of unclear etiology. A disease-modifying approach that can directly stop or slow its progression remains a major unmet need in the treatment of PD. A clinical pharmacology-based drug repositioning strategy is a useful approach for identifying new drugs for PD.


Maternal Obesity in the Mouse Compromises the Blood-Brain Barrier in the Arcuate Nucleus of Offspring.

  • Dong Won Kim‎ et al.
  • Endocrinology‎
  • 2016‎

The arcuate nucleus (ARC) regulates body weight in response to blood-borne signals of energy balance. Blood-brain barrier (BBB) permeability in the ARC is determined by capillary endothelial cells (ECs) and tanycytes. Tight junctions between ECs limit paracellular entry of blood-borne molecules into the brain, whereas EC transporters and fenestrations regulate transcellular entry. Tanycytes appear to form a barrier that prevents free diffusion of blood-borne molecules. Here we tested the hypothesis that gestation in an obese mother alters BBB permeability in the ARC of offspring. A maternal high-fat diet model was used to generate offspring from normal-weight (control) and obese dams (OffOb). Evans Blue diffusion into the ARC was higher in OffOb compared with controls, indicating that ARC BBB permeability was altered. Vessels investing the ARC in OffOb had more fenestrations than controls, although the total number of vessels was not changed. A reduced number of tanycytic processes in the ARC of OffOb was also observed. The putative transporters, Lrp1 and dysferlin, were up-regulated and tight junction components were differentially expressed in OffOb compared with controls. These data suggest that maternal obesity during pregnancy can compromise BBB formation in the fetus, leading to altered BBB function in the ARC after birth.


Maternal obesity leads to increased proliferation and numbers of astrocytes in the developing fetal and neonatal mouse hypothalamus.

  • Dong Won Kim‎ et al.
  • International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience‎
  • 2016‎

Maternal obesity during pregnancy is associated with chronic maternal, placental, and fetal inflammation; and it elevates the risk for offspring obesity. Changes in the development of the hypothalamus, a brain region that regulates body weight and energy balance, are emerging as important determinants of offspring risk, but such changes are only beginning to be defined. Here we focused on the hypothesis that the pathological exposure of developing hypothalamic astrocytes to cytokines would alter their development. A maternal high-fat diet (mHFD) mouse model was used to investigate changes in hypothalamic astrocytes in the fetus during late gestation and in early neonates by using immunochemistry, confocal microscopy, and qPCR. The number of astrocytes and the proportion of proliferating astrocytes was significantly higher in the arcuate nucleus (ARC) and the supraoptic nucleus (SON) of the hypothalamus at both ages compared to control offspring from normal weight pregnancies. Supplemental to this we found that cultured fetal hypothalamic astrocytes proliferated significantly in response to IL6 (10ng/ml), one of the cytokines significantly elevated in fetuses of obese dams, via the JAK/STAT3 signaling pathway. Thus, maternal obesity during pregnancy stimulated the proliferation and thereby increased numbers of astrocytes in the fetal as well as early neonatal hypothalamus, which may be driven, during fetal life, by IL6.


Photodynamic therapy for breast cancer in a BALB/c mouse model.

  • Tae-Gyu Ahn‎ et al.
  • Journal of gynecologic oncology‎
  • 2012‎

Photodynamic therapy (PDT) has been used for superficial neoplasms and its usage has been recently extended to deeper lesions. The purpose of this study was to observe whether or not PDT can cure breast cancer in the solid tumor model, and to define the critical point of laser amount for killing the cancer cells.


Current status of assisted reproductive technology in Korea, 2009.

  • Committee for Assisted Reproductive Technology, Korean Society of Obstetrics and Gynecology‎ et al.
  • Obstetrics & gynecology science‎
  • 2013‎

Great advances have been made in the field of assisted reproductive technology (ART) since the first in vitro fertilization (IVF) baby was born in Korea in the year of 1985. However, it deserve to say that the invaluable data from fertility centers may serve as a useful source to find out which factors affect successful IVF outcome and to offer applicable information to infertile patients and fertility clinics. This article intended to report the status of ART in 2009 Korean Society of Obstetrics and Gynecology surveyed. The current survey was performed to assess the status and success rate of ART performed in Korea, between January 1 and December 31, 2009. Reporting forms had been sent out to IVF centers via e-mail, and collected by e-mail as well in 2012. With International Committee Monitoring Assisted Reproductive Technologies recommendation, intracytoplasmic sperm injection (ICSI) and non-ICSI cases have been categorized and also IVF-ET cases involving frozen embryo replacement have been surveyed separately. Seventy-four centers have reported the treatment cycles initiated in the year of 2009, and had performed a total of 27,947 cycles of ART treatments. Among a total of 27,947 treatment cycles, IVF and ICSI cases added up to 22,049 (78.9%), with 45.3% IVF without ICSI and 54.7% IVF with ICSI, respectively. Among the IVF and ICSI patients, patients confirmed to have achieved clinical pregnancy was 28.8% per cycle with oocyte retrieval, and 30.9% per cycle with embryo transfer. The most common number of embryos transferred in 2009 is three embryos (40.4%), followed by 2 embryos (28.4%) and a single embryo transferred (13.6%). Among IVF and ICSI cycles that resulted in multiple live births, twin pregnancy rate was 45.3% and triple pregnancy rate was 1.1%. A total of 191 cases of oocyte donation had been performed to result in 25.0% of live birth rate. Meanwhile, a total of 5,619 cases of frozen embryo replacement had been performed with 33.7% of clinical pregnancy rate per cycle with embryo transfer. When comparing with international registry data, clinical pregnancy rate per transfer from fresh IVF cycles including ICSI (34.1%,) was comparable to clinical pregnancy rate per transfer in European Society for Human Reproduction and Embryology report was 32.5% though lower than 45.0% for USA data. There was no remarkable difference in status of assisted reproductive technology in Korea between the current report and the data reported in 2008. The age of women trying to get pregnant was reconfirmed to be the most important factor that may have impact on success of ART treatment.


Increased cyclooxygenase-2 and nuclear factor-κB/p65 expression in mouse hippocampi after systemic administration of tetanus toxin.

  • Bing Chun Yan‎ et al.
  • Molecular medicine reports‎
  • 2015‎

Brain inflammation has a crucial role in various diseases of the central nervous system. The hippocampus in the mammalian brain exerts an important memory function, which is sensitive to various insults, including inflammation induced by exo/endotoxin stimuli. Tetanus toxin (TeT) is an exotoxin with the capacity for neuronal binding and internalization. The present study investigated changes in inflammatory mediators in the mouse hippocampus proper (CA1‑3 regions) and dentate gyrus (DG) after TeT treatment. The experimental mice were intraperitoneally injected with TeT at a low dosage (100 ng/kg), while the control mice were injected with the same volume of saline. At 6, 12 and 24 h after TeT treatment, changes in the hippocampal levels of inflammatory mediators cyclooxygenase‑2 (COX‑2) and nuclear factor kappa‑B (NF‑κB/p65) were assessed using immunohistochemical and western blot analysis. In the control group, moderate COX‑2 immunoreactivity was observed in the stratum pyramidal (SP) of the CA2‑3 region, while almost no expression was identified in the CA1 region and the DG. COX‑2 immunoreactivity was increased by TeT in the SP and granule cell layer (GCL) of the DG in a time‑dependent manner. At 24 h post‑treatment, COX‑2 immunoreactivity in the SP of the CA1 region and in the GCL of the DG was high, and COX‑2 immunoreactivity in the SP of the CA2/3 region was highest. Furthermore, the present study observed that NF‑κB/p65 immunoreactivity was obviously increased in the SP and GCL at 6, 12 and 24 h after TeT treatment. In conclusion, the present study demonstrated that systemic treatment with TeT significantly increased the expression of COX-2 and NF-κB/p65 in the mouse hippocampus, suggesting that increased COX‑2 and NF-κB/65 expression may be associated with inflammation in the brain induced by exotoxins.


Activation of immediate-early response gene c-Fos protein in the rat paralimbic cortices after myocardial infarction.

  • Ji Yun Ahn‎ et al.
  • Neural regeneration research‎
  • 2015‎

c-Fos is a good biological marker for detecting the pathogenesis of central nervous system disorders. Few studies are reported on the change in myocardial infarction-induced c-Fos expression in the paralimbic regions. Thus, in this study, we investigated the changes in c-Fos expression in the rat cingulate and piriform cortices after myocardial infarction. Neuronal degeneration in cingulate and piriform cortices after myocardial infarction was detected using cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B histofluorescence staining. c-Fos-immunoreactive cells were observed in cingulate and piriform cortices at 3 days after myocardial infarction and peaked at 7 and 14 days after myocardial infarction. But they were hardly observed at 56 days after myocardial infarction. The chronological change of c-Fos expression determined by western blot analysis was basically the same as that of c-Fos immunoreactivity. These results indicate that myocardial infarction can cause the chronological change of immediate-early response gene c-Fos protein expression, which might be associated with the neural activity induced by myocardial infarction.


Delayed hippocampal neuronal death in young gerbil following transient global cerebral ischemia is related to higher and longer-term expression of p63 in the ischemic hippocampus.

  • Eun Joo Bae‎ et al.
  • Neural regeneration research‎
  • 2015‎

The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not been addressed yet. In this study, we first compared ischemia-induced effects on p63 expression in the hippocampal regions (CA1-3) between the young and adult gerbils subjected to 5 minutes of transient global cerebral ischemia. Neuronal death in the hippocampal CA1 region of young gerbils was significantly slow compared with that in the adult gerbils after transient global cerebral ischemia. p63 immunoreactivity in the hippocampal CA1 pyramidal neurons in the sham-operated young group was significantly low compared with that in the sham-operated adult group. p63 immunoreactivity was apparently changed in ischemic hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. In the ischemia-operated adult groups, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons was significantly decreased at 4 days post-ischemia; however, p63 immunoreactivity in the ischemia-operated young group was significantly higher than that in the ischemia-operated adult group. At 7 days post-ischemia, p63 immunoreactivity was decreased in the hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. Change patterns of p63 level in the hippocampal CA1 region of adult and young gerbils after ischemic damage were similar to those observed in the immunohistochemical results. These findings indicate that higher and longer-term expression of p63 in the hippocampal CA1 region of the young gerbils after ischemia/reperfusion may be related to more delayed neuronal death compared to that in the adults.


Double MgO-Based Perpendicular Magnetic Tunnel Junction for Artificial Neuron.

  • Dong Won Kim‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

A perpendicular spin transfer torque (p-STT)-based neuron was developed for a spiking neural network (SNN). It demonstrated the integration behavior of a typical neuron in an SNN; in particular, the integration behavior corresponding to magnetic resistance change gradually increased with the input spike number. This behavior occurred when the spin electron directions between double Co2Fe6B2 free and pinned layers in the p-STT-based neuron were switched from parallel to antiparallel states. In addition, a neuron circuit for integrate-and-fire operation was proposed. Finally, pattern-recognition simulation was performed for a single-layer SNN.


A potential role for somatostatin signaling in regulating retinal neurogenesis.

  • Kurt Weir‎ et al.
  • Scientific reports‎
  • 2021‎

Neuropeptides have been reported to regulate progenitor proliferation and neurogenesis in the central nervous system. However, these studies have typically been conducted using pharmacological agents in ex vivo preparations, and in vivo evidence for their developmental function is generally lacking. Recent scRNA-Seq studies have identified multiple neuropeptides and their receptors as being selectively expressed in neurogenic progenitors of the embryonic mouse and human retina. This includes Sstr2, whose ligand somatostatin is transiently expressed by immature retinal ganglion cells. By analyzing retinal explants treated with selective ligands that target these receptors, we found that Sstr2-dependent somatostatin signaling induces a modest, dose-dependent inhibition of photoreceptor generation, while correspondingly increasing the relative fraction of primary progenitor cells. These effects were confirmed by scRNA-Seq analysis of retinal explants but abolished in Sstr2-deficient retinas. Although no changes in the relative fraction of primary progenitors or photoreceptor precursors were observed in Sstr2-deficient retinas in vivo, scRNA-Seq analysis demonstrated accelerated differentiation of neurogenic progenitors. We conclude that, while Sstr2 signaling may act to negatively regulate retinal neurogenesis in combination with other retinal ganglion cell-derived secreted factors such as Shh, it is dispensable for normal retinal development.


Transcriptomic Profiling of Control and Thyroid-Associated Orbitopathy (TAO) Orbital Fat and TAO Orbital Fibroblasts Undergoing Adipogenesis.

  • Dong Won Kim‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2021‎

Orbital fat hyperplasia commonly occurs in thyroid-associated orbitopathy (TAO). To understand molecular mechanisms underlying orbital adipogenesis, we used transcriptomics to compare gene expression in controls and patients with TAO, as well as in orbital fibroblasts (OFs) undergoing adipogenic differentiation.


Photobiocidal-triboelectric nanolayer coating of photosensitizer/silica-alumina for reusable and visible-light-driven antibacterial/antiviral air filters.

  • Sang Bin Jeong‎ et al.
  • Chemical engineering journal (Lausanne, Switzerland : 1996)‎
  • 2022‎

Outbreaks of airborne pathogens pose a major threat to public health. Here we present a single-step nanocoating process to endow commercial face mask filters with photobiocidal activity, triboelectric filtration capability, and washability. These functions were successfully achieved with a composite nanolayer of silica-alumina (Si-Al) sol-gel, crystal violet (CV) photosensitizer, and hydrophobic electronegative molecules of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFOTES). The transparent Si-Al matrix strongly immobilized the photosensitizer molecules while dispersing them spatially, thus suppressing self-quenching. During nanolayer formation, PFOTES was anisotropically rearranged on the Si-Al matrix, promoting moisture resistance and triboelectric charging of the Si-Al/PFOTES-CV (SAPC)-coated filter. The SAPC nanolayer stabilized the photoexcited state of the photosensitizer and promoted redox reaction. Compared to pure-photosensitizer-coated filters, the SAPC filter showed substantially higher photobiocidal efficiency (∼99.99 % for bacteria and a virus) and photodurability (∼83 % reduction in bactericidal efficiency for the pure-photosensitizer filter but ∼0.34 % for the SAPC filter after 72 h of light irradiation). Moreover, after five washes with detergent, the SAPC filter maintained its photobiocidal and filtration performance, proving its reusability potential. Therefore, this SAPC nanolayer coating provides a practical strategy for manufacturing an antimicrobial and reusable mask filter for use during the ongoing COVID-19 pandemic.


Gene regulatory networks controlling temporal patterning, neurogenesis, and cell-fate specification in mammalian retina.

  • Pin Lyu‎ et al.
  • Cell reports‎
  • 2021‎

Gene regulatory networks (GRNs), consisting of transcription factors and their target sites, control neurogenesis and cell-fate specification in the developing central nervous system. In this study, we use integrated single-cell RNA and single-cell ATAC sequencing (scATAC-seq) analysis in developing mouse and human retina to identify multiple interconnected, evolutionarily conserved GRNs composed of cell-type-specific transcription factors that both activate genes within their own network and inhibit genes in other networks. These GRNs control temporal patterning in primary progenitors, regulate transition from primary to neurogenic progenitors, and drive specification of each major retinal cell type. We confirm that NFI transcription factors selectively activate expression of genes promoting late-stage temporal identity in primary retinal progenitors and identify other transcription factors that regulate rod photoreceptor specification in postnatal retina. This study inventories cis- and trans-acting factors that control retinal development and can guide cell-based therapies aimed at replacing retinal neurons lost to disease.


Temperature and species-dependent regulation of browning in retrobulbar fat.

  • Fatemeh Rajaii‎ et al.
  • Scientific reports‎
  • 2021‎

Retrobulbar fat deposits surround the posterior retina and optic nerve head, but their function and origin are obscure. We report that mouse retrobulbar fat is a neural crest-derived tissue histologically and transcriptionally resembles interscapular brown fat. In contrast, human retrobulbar fat closely resembles white adipose tissue. Retrobulbar fat is also brown in other rodents, which are typically housed at temperatures below thermoneutrality, but is white in larger animals. We show that retrobulbar fat in mice housed at thermoneutral temperature show reduced expression of the brown fat marker Ucp1, and histological properties intermediate between white and brown fat. We conclude that retrobulbar fat can potentially serve as a site of active thermogenesis, that this capability is both temperature and species-dependent, and that this may facilitate regulation of intraocular temperature.


Characterization of mWake expression in the murine brain.

  • Benjamin J Bell‎ et al.
  • The Journal of comparative neurology‎
  • 2021‎

Structure-function analyses of the mammalian brain have historically relied on anatomically-based approaches. In these investigations, physical, chemical, or electrolytic lesions of anatomical structures are applied, and the resulting behavioral or physiological responses assayed. An alternative approach is to focus on the expression pattern of a molecule whose function has been characterized and then use genetic intersectional methods to optogenetically or chemogenetically manipulate distinct circuits. We previously identified WIDE AWAKE (WAKE) in Drosophila, a clock output molecule that mediates the temporal regulation of sleep onset and sleep maintenance. More recently, we have studied the mouse homolog, mWAKE/ANKFN1, and our data suggest that its basic role in the circadian regulation of arousal is conserved. Here, we perform a systematic analysis of the expression pattern of mWake mRNA, protein, and cells throughout the adult mouse brain. We find that mWAKE labels neurons in a restricted, but distributed manner, in multiple regions of the hypothalamus (including the suprachiasmatic nucleus, dorsomedial hypothalamus, and tuberomammillary nucleus region), the limbic system, sensory processing nuclei, and additional specific brainstem, subcortical, and cortical areas. Interestingly, mWAKE is also observed in non-neuronal ependymal cells. In addition, to describe the molecular identities and clustering of mWake+ cells, we provide detailed analyses of single cell RNA sequencing data from the hypothalamus, a region with particularly significant mWAKE expression. These findings lay the groundwork for future studies into the potential role of mWAKE+ cells in the rhythmic control of diverse behaviors and physiological processes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: