Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 58 papers

Profilin modulates sarcomeric organization and mediates cardiomyocyte hypertrophy.

  • Viola Kooij‎ et al.
  • Cardiovascular research‎
  • 2016‎

Heart failure is often preceded by cardiac hypertrophy, which is characterized by increased cell size, altered protein abundance, and actin cytoskeletal reorganization. Profilin is a well-conserved, ubiquitously expressed, multifunctional actin-binding protein, and its role in cardiomyocytes is largely unknown. Given its involvement in vascular hypertrophy, we aimed to test the hypothesis that profilin-1 is a key mediator of cardiomyocyte-specific hypertrophic remodelling.


Analysis of protein composition of rabbit aqueous humor following two different cataract surgery incision procedures using 2-DE and LC-MS/MS.

  • Miroslava Stastna‎ et al.
  • Proteome science‎
  • 2011‎

The aqueous humor (AH), a liquid of the anterior and posterior chamber of the eye, comprises many proteins with various roles and important biological functions. Many of these proteins have not been identified yet and their functions in AH are still unknown. Recently, our laboratory published the protein database of AH obtained from healthy rabbits which expanded known protein identifications by 65%. Our present study extends our previous work and analyses AH following two types of cataract surgery incision procedures (clear corneal and limbal incisions) by using two dimensional gel electrophoresis (2-DE) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Although both incision protocols are commonly used during cataract surgeries, the difference in protein composition and their release into AH following each surgery has never been systematically compared and remains unclear. The first step, which is the focus of this work, is to assess the scale of the protein change, at which time does maximum release occurs and when possible, to identify protein changes.


Paramagnetic beads and magnetically mediated strain enhance cardiomyogenesis in mouse embryoid bodies.

  • Laura R Geuss‎ et al.
  • PloS one‎
  • 2014‎

Mechanical forces play an important role in proper embryologic development, and similarly such forces can directly impact pluripotency and differentiation of mouse embryonic stem cells (mESC) in vitro. In addition, manipulation of the embryoid body (EB) microenvironment, such as by incorporation of microspheres or microparticles, can similarly influence fate determination. In this study, we developed a mechanical stimulation regimen using permanent neodymium magnets to magnetically attract cells within an EB. Arginine-Glycine-Aspartic Acid (RGD)-conjugated paramagnetic beads were incorporated into the interior of the EBs during aggregation, allowing us to exert force on individual cells using short-term magnetization. EBs were stimulated for one hour at different magnetic field strengths, subsequently exerting a range of force intensity on the cells at different stages of early EB development. Our results demonstrated that following exposure to a 0.2 Tesla magnetic field, ESCs respond to magnetically mediated strain by activating Protein Kinase A (PKA) and increasing phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) expression. The timing of stimulation can also be tailored to guide ESC differentiation: the combination of bone morphogenetic protein 4 (BMP4) supplementation with one hour of magnetic attraction on Day 3 enhances cardiomyogenesis by increasing contractile activity and the percentage of sarcomeric α-actin-expressing cells compared to control samples with BMP4 alone. Interestingly, we also observed that the beads alone had some impact on differentiation by increasingly slightly, albeit not significantly, the percentage of cardiomyocytes. Together these results suggest that magnetically mediated strain can be used to enhance the percentage of mouse ESC-derived cardiomyocytes over current differentiation protocols.


Acute neuropathological consequences of short-term mechanical ventilation in wild-type and Alzheimer's disease mice.

  • Shouri Lahiri‎ et al.
  • Critical care (London, England)‎
  • 2019‎

Mechanical ventilation is strongly associated with cognitive decline after critical illness. This finding is particularly evident among older individuals who have pre-existing cognitive impairment, most commonly characterized by varying degrees of cerebral amyloid-β accumulation, neuroinflammation, and blood-brain barrier dysfunction. We sought to test the hypothesis that short-term mechanical ventilation contributes to the neuropathology of cognitive impairment by (i) increasing cerebral amyloid-β accumulation in mice with pre-existing Alzheimer's disease pathology, (ii) increasing neurologic and systemic inflammation in wild-type mice and mice with pre-existing Alzheimer's disease pathology, and (iii) increasing hippocampal blood-brain barrier permeability in wild-type mice and mice with pre-existing Alzheimer's disease pathology.


Tyrosine 23 phosphorylation-dependent cell-surface localization of annexin A2 is required for invasion and metastases of pancreatic cancer.

  • Lei Zheng‎ et al.
  • PloS one‎
  • 2011‎

The aggressiveness of pancreatic ductal adenocarcinoma (PDA) is characterized by its high metastatic potential and lack of effective therapies, which is the result of a lack of understanding of the mechanisms involved in promoting PDA metastases. We identified Annexin A2 (ANXA2), a member of the Annexin family of calcium-dependent phospholipid binding proteins, as a new molecule that promotes PDA invasion and metastases. We found ANXA2 to be a PDA-associated antigen recognized by post-treatment sera of patients who demonstrated prolonged survival following treatment with a PDA-specific vaccine. Cell surface ANXA2 increases with PDA development and progression. Knockdown of ANXA2 expression by RNA interference or blocking with anti-ANXA2 antibodies inhibits in vitro invasion of PDA cells. In addition, post-vaccination patient sera inhibits in vitro invasion of PDA cells, suggesting that therapeutic anti-ANXA2 antibodies are induced by the vaccine. Furthermore, cell-surface localization of ANXA2 is tyrosine 23 phosphorylation-dependent; and tyrosine 23 phosphorylation is required for PDA invasion. We demonstrated that tyrosine 23 phosphorylation resulting in surface expression of ANXA2 is required for TGFβ-induced, Rho-mediated epithelial-mesenchymal transition (EMT), linking the cellular function of ANXA2 which was previously shown to be associated with small GTPase-regulated cytoskeletal rearrangements, to the EMT process in PDA. Finally, using mouse PDA models, we showed that shRNA knock-down of ANXA2, a mutation at tyrosine 23, or anti-ANXA2 antibodies, inhibit PDA metastases and prolong mouse survival. Thus, ANXA2 is part of a novel molecular pathway underlying PDA metastases and a new target for development of PDA therapeutics.


Newt cells secrete extracellular vesicles with therapeutic bioactivity in mammalian cardiomyocytes.

  • Ryan C Middleton‎ et al.
  • Journal of extracellular vesicles‎
  • 2018‎

Newts can regenerate amputated limbs and cardiac tissue, unlike mammals which lack broad regenerative capacity. Several signaling pathways involved in cell proliferation, differentiation and survival during newt tissue regeneration have been elucidated, however the factors that coordinate signaling between cells, as well as the conservation of these factors in other animals, are not well defined. Here we report that media conditioned by newt limb explant cells (A1 cells) protect mammalian cardiomyocytes from oxidative stress-induced apoptosis. The cytoprotective effect of A1-conditioned media was negated by exposing A1 cells to GW4869, which suppresses the generation of extracellular vesicles (EVs). A1-EVs are similar in diameter (~100-150 nm), structure, and share several membrane surface and cargo proteins with mammalian exosomes. However, isolated A1-EVs contain significantly higher levels of both RNA and protein per particle than mammalian EVs. Additionally, numerous cargo RNAs and proteins are unique to A1-EVs. Of particular note, A1-EVs contain numerous mRNAs encoding nuclear receptors, membrane ligands, as well as transcription factors. Mammalian cardiomyocytes treated with A1-EVs showed increased expression of genes in the PI3K/AKT pathway, a pivotal player in survival signaling. We conclude that newt cells secrete EVs with diverse, distinctive RNA and protein contents. Despite ~300 million years of evolutionary divergence between newts and mammals, newt EVs confer cytoprotective effects on mammalian cardiomyocytes.


Biometric and Psychometric Remote Monitoring and Cardiovascular Risk Biomarkers in Ischemic Heart Disease.

  • Chrisandra L Shufelt‎ et al.
  • Journal of the American Heart Association‎
  • 2020‎

Background Patients with stable ischemic heart disease represent a heterogeneous population at variable risk for major adverse cardiac events (MACE). Because MACE typically occurs outside the hospital, we studied whether biometric and psychometric remote patient monitoring are associated with MACE risk biomarkers. Methods and Results In 198 patients with stable ischemic heart disease (mean age 65±11 years, 60% women), we evaluated baseline measures, including biometric (FitBit 2) and psychometric (acquired via smartphone-administered patient-reported outcomes) remote monitoring, in the PRE-MACE (Prediction, Risk, and Evaluation of Major Adverse Cardiac Events) study. In multivariable adjusted regression analyses, we examined the association of these measures with biomarkers of MACE risk, including NT-proBNP (N-terminal pro-b-type natriuretic peptide), u-hs-cTnI (ultra-high sensitivity cardiac-specific troponin I), and hs-CRP (high-sensitivity C-reactive) protein. Both biometric and psychometric measures were associated with NT-proBNP. Specifically, step count, heart rate, physical activity, global health score, and physical function score were all inversely related, whereas physical limitation score was directly related (P≤0.05 for all). However, only biometric measures (step count and heart rate) were associated with u-hs-cTnI (inversely related, P<0.05), while only the psychometric measures of physical limitation were associated with hs-CRP (directly related, P≤0.05). Conclusions In stable ischemic heart disease patients, remotely monitored measures were associated with MACE risk biomarkers. Both biometric and psychometric measures were related to NT-proBNP. In contrast, biometric measures were uniquely related to u-hs-cTnI, while psychometric indices were uniquely related to hs-CRP. Further investigation could assess the predictive value of these metrics for MACE in ischemic heart disease.


MitoPlex: A targeted multiple reaction monitoring assay for quantification of a curated set of mitochondrial proteins.

  • Aleksandr B Stotland‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2020‎

Mitochondria are the major source of cellular energy (ATP), as well as critical mediators of widespread functions such as cellular redox balance, apoptosis, and metabolic flux. The organelles play an especially important role in the maintenance of cardiac homeostasis; their inability to generate ATP following impairment due to ischemic damage has been directly linked to organ failure. Methods to quantify mitochondrial content are limited to low throughput immunoassays, measurement of mitochondrial DNA, or relative quantification by untargeted mass spectrometry. Here, we present a high throughput, reproducible and quantitative mass spectrometry multiple reaction monitoring based assay of 37 proteins critical to central carbon chain metabolism and overall mitochondrial function termed 'MitoPlex'. We coupled this protein multiplex with a parallel analysis of the central carbon chain metabolites (219 metabolite assay) extracted in tandem from the same sample, be it cells or tissue. In tests of its biological applicability in cells and tissues, "MitoPlex plus metabolites" indicated profound effects of HMG-CoA Reductase inhibition (e.g., statin treatment) on mitochondria of i) differentiating C2C12 skeletal myoblasts, as well as a clear opposite trend of statins to promote mitochondrial protein expression and metabolism in heart and liver, while suppressing mitochondrial protein and ii) aspects of metabolism in the skeletal muscle obtained from C57Bl6 mice. Our results not only reveal new insights into the metabolic effect of statins in skeletal muscle, but present a new high throughput, reliable MS-based tool to study mitochondrial dynamics in both cell culture and in vivo models.


Proteomics discovery of pulmonary hypertension biomarkers: Insulin-like growth factor binding proteins are associated with disease severity.

  • Melanie K Nies‎ et al.
  • Pulmonary circulation‎
  • 2022‎

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by sustained elevations of pulmonary artery pressure. To date, we lack circulating, diagnostic, and prognostic markers that correlate to clinical and functional parameters. In this study, we performed mass spectrometry-based proteomics analysis to identify circulating biomarkers of PAH. Plasma samples from patients with idiopathic pulmonary arterial hypertension (IPAH, N = 9) and matched normal controls (N = 9) were digested with trypsin and analyzed using data-dependent acquisition on an Orbitrap mass spectrometer. A total of 826 (false discovery rate [FDR] 0.047) and 461 (FDR 0.087) proteins were identified across all plasma samples obtained from IPAH and control subjects, respectively. Of these, 153 proteins showed >2 folds change (p < 0.05) between groups. Circulating levels of carbonic anhydrase 2 (CA2), plasma kallikrein (KLKB1), and the insulin-like growth factor binding proteins (IGFBP1-7) were quantified by immunoassay in an independent verification cohort (N = 36 PAH and N = 35 controls). CA2 and KLKB1 were significantly different in PAH versus control but were not associated with any functional or hemodynamic measurements. Whereas, IGFBP1 and 2 were associated with higher pulmonary vascular resistance, IGFBP2, 4, and 7 with decreased 6-min walk distance (6MWD), and IGFBP1, 2, 4, and 7 with worse survival. This plasma proteomic discovery analysis suggests the IGF axis may serve as important new biomarkers for PAH and play an important role in PAH pathogenesis.


Protein arginine deiminase 2 (PAD2) modulates the polarization of THP-1 macrophages to the anti-inflammatory M2 phenotype.

  • Aneta Stachowicz‎ et al.
  • Journal of inflammation (London, England)‎
  • 2022‎

Macrophages are effector cells of the innate immune system that undergo phenotypical changes in response to organ injury and repair. These cells are most often classified as proinflammatory M1 and anti-inflammatory M2 macrophages. Protein arginine deiminase (PAD), which catalyses the irreversible conversion of protein-bound arginine into citrulline, is expressed in macrophages. However, the substrates of PAD and its role in immune cells remain unclear. This study aimed to investigate the role of PAD in THP-1 macrophage polarization to the M1 and M2 phenotypes and identify the citrullinated proteins and modified arginines that are associated with this biological switch using mass spectrometry.


Retinal pathological features and proteome signatures of Alzheimer's disease.

  • Yosef Koronyo‎ et al.
  • Acta neuropathologica‎
  • 2023‎

Alzheimer's disease (AD) pathologies were discovered in the accessible neurosensory retina. However, their exact nature and topographical distribution, particularly in the early stages of functional impairment, and how they relate to disease progression in the brain remain largely unknown. To better understand the pathological features of AD in the retina, we conducted an extensive histopathological and biochemical investigation of postmortem retina and brain tissues from 86 human donors. Quantitative examination of superior and inferior temporal retinas from mild cognitive impairment (MCI) and AD patients compared to those with normal cognition (NC) revealed significant increases in amyloid β-protein (Aβ42) forms and novel intraneuronal Aβ oligomers (AβOi), which were closely associated with exacerbated retinal macrogliosis, microgliosis, and tissue atrophy. These pathologies were unevenly distributed across retinal layers and geometrical areas, with the inner layers and peripheral subregions exhibiting most pronounced accumulations in the MCI and AD versus NC retinas. While microgliosis was increased in the retina of these patients, the proportion of microglial cells engaging in Aβ uptake was reduced. Female AD patients exhibited higher levels of retinal microgliosis than males. Notably, retinal Aβ42, S100 calcium-binding protein B+ macrogliosis, and atrophy correlated with severity of brain Aβ pathology, tauopathy, and atrophy, and most retinal pathologies reflected Braak staging. All retinal biomarkers correlated with the cognitive scores, with retinal Aβ42, far-peripheral AβOi and microgliosis displaying the strongest correlations. Proteomic analysis of AD retinas revealed activation of specific inflammatory and neurodegenerative processes and inhibition of oxidative phosphorylation/mitochondrial, and photoreceptor-related pathways. This study identifies and maps retinopathy in MCI and AD patients, demonstrating the quantitative relationship with brain pathology and cognition, and may lead to reliable retinal biomarkers for noninvasive retinal screening and monitoring of AD.


Seroprevalence of antibodies to SARS-CoV-2 in healthcare workers: a cross-sectional study.

  • Joseph E Ebinger‎ et al.
  • BMJ open‎
  • 2021‎

We sought to determine the extent of SARS-CoV-2 seroprevalence and the factors associated with seroprevalence across a diverse cohort of healthcare workers.


US Severe Acute Respiratory Syndrome Coronavirus 2 Epsilon Variant: Highly Transmissible but With an Adjusted Muted Host T-Cell Response.

  • Jasmine T Plummer‎ et al.
  • Clinical infectious diseases : an official publication of the Infectious Diseases Society of America‎
  • 2022‎

The multiple mutations comprising the epsilon variant demonstrate the independent convergent evolution of severe acute respiratory syndrome coronavirus (SARS-CoV-2), with its spike protein mutation L452R present in the delta (L452R), kappa (L452R), and lambda (L452Q) variants.


Proteomic discovery in sickle cell disease: Elevated neurogranin levels in children with sickle cell disease.

  • Eboni I Lance‎ et al.
  • Proteomics. Clinical applications‎
  • 2021‎

Sickle cell disease (SCD) is an inherited hemoglobinopathy that causes stroke and silent cerebral infarct (SCI). Our aim was to identify markers of brain injury in SCD.


Osteopontin depletion in macrophages perturbs proteostasis via regulating UCHL1-UPS axis and mitochondria-mediated apoptosis.

  • Altan Rentsendorj‎ et al.
  • Frontiers in immunology‎
  • 2023‎

Osteopontin (OPN; also known as SPP1), an immunomodulatory cytokine highly expressed in bone marrow-derived macrophages (BMMΦ), is known to regulate diverse cellular and molecular immune responses. We previously revealed that glatiramer acetate (GA) stimulation of BMMΦ upregulates OPN expression, promoting an anti-inflammatory, pro-healing phenotype, whereas OPN inhibition triggers a pro-inflammatory phenotype. However, the precise role of OPN in macrophage activation state is unknown.


Identification of novel biomarkers for the prediction of subclinical coronary artery atherosclerosis in patients with rheumatoid arthritis: an exploratory analysis.

  • Joan M Bathon‎ et al.
  • Arthritis research & therapy‎
  • 2023‎

Cardiovascular (CV) risk estimation calculators for the general population underperform in patients with rheumatoid arthritis (RA). The purpose of this study was to identify relevant protein biomarkers that could be added to traditional CV risk calculators to improve the capacity of coronary artery calcification (CAC) prediction in individuals with RA. In a second step, we quantify the improvement of this prediction of CAC when these circulating biomarkers are added to standard risk scores.


High-Field Asymmetric Waveform Ion Mobility Spectrometry: Practical Alternative for Cardiac Proteome Sample Processing.

  • Lizhuo Ai‎ et al.
  • Journal of proteome research‎
  • 2023‎

Heart tissue sample preparation for mass spectrometry (MS) analysis that includes prefractionation reduces the cellular protein dynamic range and increases the relative abundance of nonsarcomeric proteins. We previously described "IN-Sequence" (IN-Seq) where heart tissue lysate is sequentially partitioned into three subcellular fractions to increase the proteome coverage more than a single direct tissue analysis by mass spectrometry. Here, we report an adaptation of the high-field asymmetric ion mobility spectrometry (FAIMS) coupled to mass spectrometry, and the establishment of a simple one step sample preparation coupled with gas-phase fractionation. The FAIMS approach substantially reduces manual sample handling, significantly shortens the MS instrument processing time, and produces unique protein identification and quantification approximating the commonly used IN-Seq method in less time.


Assessment of a 60-Biomarker Health Surveillance Panel (HSP) on Whole Blood from Remote Sampling Devices by Targeted LC/MRM-MS and Discovery DIA-MS Analysis.

  • Stephen A Whelan‎ et al.
  • Analytical chemistry‎
  • 2023‎

Telehealth, accessing healthcare and wellness remotely, should be a cost-effective and efficient way for individuals to receive care. The convenience of having a reliable remote collection device for blood tests will facilitate access to precision medicine and healthcare. Herein, we tested a 60-biomarker health surveillance panel (HSP), containing 35 FDA/LDT assays and covering at least 14 pathological states, on 8 healthy individuals' ability to collect their own capillary blood from a lancet finger prick and directly compared it to the traditional phlebotomist venous blood and plasma collection methods. All samples were spiked with 114 stable-isotope-labeled (SIL) HSP peptides and quantitatively analyzed by liquid chromatography-multiple reaction monitoring-mass spectrometry (LC/MRM-MS) scheduled method targeting 466 transitions from 114 HSP peptides and by a discovery data-independent acquisition mass spectrometry (DIA-MS) method. The average peak area ratio (PAR) of the HSP quantifier peptide transitions from all 8 volunteers' capillary blood (n = 48), venous blood (n = 48), and matched plasma (n = 24) was <20% coefficients of variation (CV). Heat map analysis of all 8 volunteers demonstrated that each individual had a unique biosignature. Biological replicates from capillary blood and venous blood clustered within each volunteer in k-means clustering analysis. Pearson statistical analysis of the three biofluids indicated that there was >90% similarity. Discovery DIA-MS analysis of the same samples using a plasma spectral library and a pan-human spectral library identified 1121 and 4661 total proteins, respectively. In addition, at least 122 FDA-approved biomarkers were identified. DIA-MS analysis reproducibly quantitated (<30% CV) ∼600-700 proteins in capillary blood, ∼800 proteins in venous blood, and ∼300-400 proteins in plasma, demonstrating that an expansive biomarker panel is possible with current mass spectrometry technology. Both targeted LC/MRM-MS and discovery DIA-MS analysis of whole blood collected on remote sampling devices are viable options for personal proteome biosignature stratification in precision medicine and precision health.


Protein Coronas on Functionalized Nanoparticles Enable Quantitative and Precise Large-Scale Deep Plasma Proteomics.

  • Ting Huang‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The wide dynamic range of circulating proteins coupled with the diversity of proteoforms present in plasma has historically impeded comprehensive and quantitative characterization of the plasma proteome at scale. Automated nanoparticle (NP) protein corona-based proteomics workflows can efficiently compress the dynamic range of protein abundances into a mass spectrometry (MS)-accessible detection range. This enhances the depth and scalability of quantitative MS-based methods, which can elucidate the molecular mechanisms of biological processes, discover new protein biomarkers, and improve comprehensiveness of MS-based diagnostics.


Abl tyrosine kinase phosphorylates nonmuscle Myosin light chain kinase to regulate endothelial barrier function.

  • Steven M Dudek‎ et al.
  • Molecular biology of the cell‎
  • 2010‎

Nonmuscle myosin light chain kinase (nmMLCK), a multi-functional cytoskeletal protein critical to vascular homeostasis, is highly regulated by tyrosine phosphorylation. We identified multiple novel c-Abl-mediated nmMLCK phosphorylation sites by mass spectroscopy analysis (including Y231, Y464, Y556, Y846) and examined their influence on nmMLCK function and human lung endothelial cell (EC) barrier regulation. Tyrosine phosphorylation of nmMLCK increased kinase activity, reversed nmMLCK-mediated inhibition of Arp2/3-mediated actin polymerization, and enhanced binding to the critical actin-binding phosphotyrosine protein, cortactin. EC challenge with sphingosine 1-phosphate (S1P), a potent barrier-enhancing agonist, resulted in c-Abl and phosphorylated nmMLCK recruitment into caveolin-enriched microdomains, rapid increases in Abl kinase activity, and spatial targeting of c-Abl to barrier-promoting cortical actin structures. Conversely, reduced c-Abl expression in EC (siRNA) markedly attenuated S1P-mediated cortical actin formation, reduced the EC modulus of elasticity (assessed by atomic force microscopy), reduced nmMLCK and cortactin tyrosine phosphorylation, and attenuated S1P-mediated barrier enhancement. These studies indicate an essential role for Abl kinase in vascular barrier regulation via posttranslational modification of nmMLCK and strongly support c-Abl-cortactin-nmMLCK interaction as a novel determinant of cortical actin-based cytoskeletal rearrangement critical to S1P-mediated EC barrier enhancement.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: