Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 52 papers

Neuronal expression of the human neuropeptide S receptor NPSR1 identifies NPS-induced calcium signaling pathways.

  • Frank Erdmann‎ et al.
  • PloS one‎
  • 2015‎

The neuropeptide S (NPS) system was discovered as a novel neurotransmitter system a decade ago and has since been identified as a key player in the modulation of fear and anxiety. Genetic variations of the human NPS receptor (NPSR1) have been associated with pathologies like panic disorders. However, details on the molecular fundamentals of NPSR1 activity in neurons remained elusive. We expressed NPSR1 in primary hippocampal cultures. Using single-cell calcium imaging we found that NPSR1 stimulation induced calcium mobilization from the endoplasmic reticulum via activation of IP3 and ryanodine receptors. Store-operated calcium channels were activated in a downstream process mediating entry of extracellular calcium. We provide the first detailed analysis of NPSR1 activity and the underlying intracellular pathways with respect to calcium mobilization in neurons.


FGF signalling inhibits neural induction in human embryonic stem cells.

  • Boris Greber‎ et al.
  • The EMBO journal‎
  • 2011‎

Human embryonic stem cells (hESCs) can exit the self-renewal programme, through the action of signalling molecules, at any given time and differentiate along the three germ layer lineages. We have systematically investigated the specific roles of three signalling pathways, TGFβ/SMAD2, BMP/SMAD1, and FGF/ERK, in promoting the transition of hESCs into the neuroectoderm lineage. In this context, inhibition of SMAD2 and ERK signalling served to cooperatively promote exit from hESC self-renewal through the rapid downregulation of NANOG and OCT4. In contrast, inhibition of SMAD1 signalling acted to maintain SOX2 expression and prevent non-neural differentiation via HAND1. Inhibition of FGF/ERK upregulated OTX2 that subsequently induced the neuroectodermal fate determinant PAX6, revealing a novel role for FGF2 in indirectly repressing PAX6 in hESCs. Combined inhibition of the three pathways hence resulted in highly efficient neuroectoderm formation within 4 days, and subsequently, FGF/ERK inhibition promoted rapid differentiation into peripheral neurons. Our study assigns a novel, biphasic role to FGF/ERK signalling in the neural induction of hESCs, which may also have utility for applications requiring the rapid and efficient generation of peripheral neurons.


Selective loss of noradrenaline exacerbates early cognitive dysfunction and synaptic deficits in APP/PS1 mice.

  • Thea Hammerschmidt‎ et al.
  • Biological psychiatry‎
  • 2013‎

Degeneration of the locus coeruleus (LC), the major noradrenergic nucleus in the brain, occurs early and is ubiquitous in Alzheimer's disease (AD). Experimental lesions to the LC exacerbate AD-like neuropathology and cognitive deficits in several transgenic mouse models of AD. Because the LC contains multiple neuromodulators known to affect amyloid β toxicity and cognitive function, the specific role of noradrenaline (NA) in AD is not well understood.


The primate-specific peptide Y-P30 regulates morphological maturation of neocortical dendritic spines.

  • Janine R Neumann‎ et al.
  • PloS one‎
  • 2019‎

The 30-amino acid peptide Y-P30 corresponds to the N-terminus of the primate-specific, sweat gland-derived dermcidin prepropeptide. Previous work has revealed that Y-P30 enhances the interaction of pleiotrophin and syndecans-2/3, and thus represents a natural ligand to study this signaling pathway. In immature neurons, Y-P30 activates the c-Src and p42/44 ERK kinase pathway, increases the amount of F-actin in axonal growth cones, and promotes neuronal survival, cell migration and axonal elongation. The action of Y-P30 on axonal growth requires syndecan-3 and heparan sulfate side chains. Whether Y-P30 has the potential to influence dendrites and dendritic protrusions has not been explored. The latter is suggested by the observations that syndecan-2 expression increases during postnatal development, that syndecan-2 becomes enriched in dendritic spines, and that overexpression of syndecan-2 in immature neurons results in a premature morphological maturation of dendritic spines. Here, analysing rat cortical pyramidal and non-pyramidal neurons in organotypic cultures, we show that Y-P30 does not alter the development of the dendritic arborization patterns. However, Y-P30 treatment decreases the density of apical, but not basal dendritic protrusions at the expense of the filopodia. Analysis of spine morphology revealed an unchanged mushroom/stubby-to-thin spine ratio and a shortening of the longest decile of dendritic protrusions. Whole-cell recordings from cortical principal neurons in dissociated cultures grown in the presence of Y-P30 demonstrated a decrease in the frequency of glutamatergic mEPSCs. Despite these differences in protrusion morphology and synaptic transmission, the latter likely attributable to presynaptic effects, calcium event rate and amplitude recorded in pyramidal neurons in organotypic cultures were not altered by Y-P30 treatment. Together, our data suggest that Y-P30 has the capacity to decelerate spinogenesis and to promote morphological, but not synaptic, maturation of dendritic protrusions.


Aggregated Tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo.

  • Ilie-Cosmin Stancu‎ et al.
  • Acta neuropathologica‎
  • 2019‎

Brains of Alzheimer's disease patients are characterized by the presence of amyloid plaques and neurofibrillary tangles, both invariably associated with neuroinflammation. A crucial role for NLRP3-ASC inflammasome [NACHT, LRR and PYD domains-containing protein 3 (NLRP3)-Apoptosis-associated speck-like protein containing a CARD (ASC)] in amyloid-beta (Aβ)-induced microgliosis and Aβ pathology has been unequivocally identified. Aβ aggregates activate NLRP3-ASC inflammasome (Halle et al. in Nat Immunol 9:857-865, 2008) and conversely NLRP3-ASC inflammasome activation exacerbates amyloid pathology in vivo (Heneka et al. in Nature 493:674-678, 2013), including by prion-like ASC-speck cross-seeding (Venegas et al. in Nature 552:355-361, 2017). However, the link between inflammasome activation, as crucial sensor of innate immunity, and Tau remains unexplored. Here, we analyzed whether Tau aggregates acting as prion-like Tau seeds can activate NLRP3-ASC inflammasome. We demonstrate that Tau seeds activate NLRP3-ASC-dependent inflammasome in primary microglia, following microglial uptake and lysosomal sorting of Tau seeds. Next, we analyzed the role of inflammasome activation in prion-like or templated seeding of Tau pathology and found significant inhibition of exogenously seeded Tau pathology by ASC deficiency in Tau transgenic mice. We furthermore demonstrate that chronic intracerebral administration of the NLRP3 inhibitor, MCC950, inhibits exogenously seeded Tau pathology. Finally, ASC deficiency also decreased non-exogenously seeded Tau pathology in Tau transgenic mice. Overall our findings demonstrate that Tau-seeding competent, aggregated Tau activates the ASC inflammasome through the NLRP3-ASC axis, and we demonstrate an exacerbating role of the NLRP3-ASC axis on exogenously and non-exogenously seeded Tau pathology in Tau mice in vivo. The NLRP3-ASC inflammasome, which is an important sensor of innate immunity and intensively explored for its role in health and disease, hence presents as an interesting therapeutic approach to target three crucial pathogenetic processes in AD, including prion-like seeding of Tau pathology, Aβ pathology and neuroinflammation.


Stimulation of 5-HT receptors in anterodorsal BNST guides fear to predictable and unpredictable threat.

  • Margarita Hessel‎ et al.
  • European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology‎
  • 2020‎

Through pharmacological manipulation of the serotonergic (5-Hydroxytryptamin, 5-HT) system, combined with behavioral analysis, we tested the hypothesis that fear responses to predictable and unpredictable threat are regulated through stimulation of 5-HT receptors (5-HT-R) in the anterodorsal section of the bed nucleus of the stria terminalis (adBNST). Local adBNST application of 5-HT1A-R antagonist WAY100635 and 5-HT1B-R antagonist NAS-181 before fear retrieval enhanced freezing, 24 h after predictable fear conditioning. In contrast, increased fear responses to unpredictable threat were blocked by 5-HT1A-R agonist Buspirone (given before conditioning or retrieval) and 5-HT1B-R agonist CP-94253 (applied before training). Prolonged fear responses were also blocked by local application of the 5-HT2A-R antagonist R-96544 before fear retrieval, and conversely, local application of the 5-HT2A-R agonist NBOH-2C-CN hydrochloride before fear retrieval enhanced freezing 24 h after predictable conditioning, indicating augmented fear responses. Activation of inhibitory 5-HT1A- or 5-HT1B-Rs and the blockade of the excitatory 5-HT2A-R before unpredictable fear conditioning significantly reduced freezing during retrieval. The results from this study suggest that modulation of inhibitory 5-HT1A/1B-R and/or excitatory 5-HT2A-R activity in the adBNST may represent potential targets for the development of new treatment strategies in anxiety disorders. In addition, this study supports the validity and reliability of the mouse model of modulated fear to predictable and unpredictable threats to study mechanisms of fear and anxiety in combination with pharmacological manipulations.


Protective potential of dimethyl fumarate in a mouse model of thalamocortical demyelination.

  • Manuela Cerina‎ et al.
  • Brain structure & function‎
  • 2018‎

Alterations in cortical cellular organization, network functionality, as well as cognitive and locomotor deficits were recently suggested to be pathological hallmarks in multiple sclerosis and corresponding animal models as they might occur following demyelination. To investigate functional changes following demyelination in a well-defined, topographically organized neuronal network, in vitro and in vivo, we focused on the primary auditory cortex (A1) of mice in the cuprizone model of general de- and remyelination. Following myelin loss in this model system, the spatiotemporal propagation of incoming stimuli in A1 was altered and the hierarchical activation of supra- and infragranular cortical layers was lost suggesting a profound effect exerted on neuronal network level. In addition, the response latency in field potential recordings and voltage-sensitive dye imaging was increased following demyelination. These alterations were accompanied by a loss of auditory discrimination abilities in freely behaving animals, a reduction of the nuclear factor-erythroid 2-related factor-2 (Nrf-2) protein in the nucleus in histological staining and persisted during remyelination. To find new strategies to restore demyelination-induced network alteration in addition to the ongoing remyelination, we tested the cytoprotective potential of dimethyl fumarate (DMF). Therapeutic treatment with DMF during remyelination significantly modified spatiotemporal stimulus propagation in the cortex, reduced the cognitive impairment, and prevented the demyelination-induced decrease in nuclear Nrf-2. These results indicate the involvement of anti-oxidative mechanisms in regulating spatiotemporal cortical response pattern following changes in myelination and point to DMF as therapeutic compound for intervention.


Neuropeptide S-Mediated Modulation of Prepulse Inhibition Depends on Age, Gender, Stimulus-Timing, and Attention.

  • Wei Si‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2021‎

Conflicting reports about the role of neuropeptide S (NPS) in animal models of psychotic-like behavior and inconsistent results from human genetic studies seeking potential associations with schizophrenia prompted us to reevaluate the effects of NPS in the prepulse inhibition (PPI) paradigm in mice. Careful examination of NPS receptor (NPSR1) knockout mice at different ages revealed that PPI deficits are only expressed in young male knockout animals (<12 weeks of age), that can be replicated in NPS precursor knockout mice and appear strain-independent, but are absent in female mice. PPI deficits can be aggravated by MK-801 and alleviated by clozapine. Importantly, treatment of wildtype mice with a centrally-active NPSR1 antagonist was able to mimic PPI deficits. PPI impairment in young male NPSR1 and NPS knockout mice may be caused by attentional deficits that are enhanced by increasing interstimulus intervals. Our data reveal a substantial NPS-dependent developmental influence on PPI performance and confirm a significant role of attentional processes for sensory-motor gating. Through its influence on attention and arousal, NPS appears to positively modulate PPI in young animals, whereas compensatory mechanisms may alleviate NPS-dependent deficits in older mice.


Human-Specific Neuropeptide S Receptor Variants Regulate Fear Extinction in the Basal Amygdala of Male and Female Mice Depending on Threat Salience.

  • Xabier Bengoetxea‎ et al.
  • Biological psychiatry‎
  • 2021‎

A nonsynonymous single nucleotide polymorphism in the neuropeptide S receptor 1 (NPSR1) gene (rs324981) results in isoleucine-to-asparagine substitution at amino acid 107. In humans, the ancestral variant (NPSR1 I107) is associated with increased anxiety sensitivity and risk of panic disorder, while the human-specific variant (NPSR1 N107) is considered protective against excessive anxiety. In rodents, neurobiological constituents of the NPS system have been analyzed in detail and their anxiolytic-like effects have been endorsed. However, their implication for anxiety and related disorders in humans remains unclear, as rodents carry only the ancestral NPSR1 I107 variant.


Seizure Prediction in Genetic Rat Models of Absence Epilepsy: Improved Performance through Multiple-Site Cortico-Thalamic Recordings Combined with Machine Learning.

  • Björn Budde‎ et al.
  • eNeuro‎
  • 2022‎

Seizure prediction is the grand challenge of epileptology. However, effort was devoted to prediction of focal seizures, while generalized seizures were regarded as stochastic events. Long-lasting local field potential (LFP) recordings containing several hundred generalized spike and wave discharges (SWDs), acquired at eight locations in the cortico-thalamic system of absence epileptic rats, were iteratively analyzed in all possible combinations of either two or three recording sites, by a wavelet-based algorithm, calculating the product of the wavelet-energy signaling increases in synchronicity. Sensitivity and false alarm rate of prediction were compared between various combinations, and wavelet spectra of true and false positive predictions were fed to a random forest machine learning algorithm to further differentiate between them. Wavelet analysis of intracortical and cortico-thalamic LFP traces showed a significantly smaller number of false alarms compared with intrathalamic combinations, while predictions based on recordings in Layers IV, V, and VI of the somatosensory-cortex significantly outreached all other combinations in terms of prediction sensitivity. In 24-h out-of-sample recordings of nine Genetic Absence Epilepsy Rats from Strasbourg (GAERS), containing diurnal fluctuations of SWD occurrence, classification of true and false positives by the trained random forest further reduced the false alarm rate by 71%, although at some trade-off between false alarms and sensitivity of prediction, as reflected in relatively low F1 score values. Results provide support for the cortical-focus theory of absence epilepsy and allow the conclusion that SWDs are predictable to some degree. The latter paves the way for the development of closed-loop SWD prediction-prevention systems. Suggestions for a possible translation to human data are outlined.


Differential regulation of HCN channel isoform expression in thalamic neurons of epileptic and non-epileptic rat strains.

  • Tatyana Kanyshkova‎ et al.
  • Neurobiology of disease‎
  • 2012‎

Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels represent the molecular substrate of the hyperpolarization-activated inward current (I(h)). Although these channels act as pacemakers for the generation of rhythmic activity in the thalamocortical network during sleep and epilepsy, their developmental profile in the thalamus is not yet fully understood. Here we combined electrophysiological, immunohistochemical, and mathematical modeling techniques to examine HCN gene expression and I(h) properties in thalamocortical relay (TC) neurons of the dorsal part of the lateral geniculate nucleus (dLGN) in an epileptic (WAG/Rij) compared to a non-epileptic (ACI) rat strain. Recordings of TC neurons between postnatal day (P) 7 and P90 in both rat strains revealed that I(h) was characterized by higher current density, more hyperpolarized voltage dependence, faster activation kinetics, and reduced cAMP-sensitivity in epileptic animals. All four HCN channel isoforms (HCN1-4) were detected in dLGN, and quantitative analyses revealed a developmental increase of protein expression of HCN1, HCN2, and HCN4 but a decrease of HCN3. HCN1 was expressed at higher levels in WAG/Rij rats, a finding that was correlated with increased expression of the interacting proteins filamin A (FilA) and tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). Analysis of a simplified computer model of the thalamic network revealed that the alterations of I(h) found in WAG/Rij rats compensate each other in a way that leaves I(h) availability constant, an effect that ensures unaltered cellular burst activity and thalamic oscillations. These data indicate that during postnatal developmental the hyperpolarizing shift in voltage dependency (resulting in less current availability) is compensated by an increase in current density in WAG/Rij thereby possibly limiting the impact of I(h) on epileptogenesis. Because HCN3 is expressed higher in young versus older animals, HCN3 likely does not contribute to alterations in I(h) in older animals.


Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation.

  • Markus P Kummer‎ et al.
  • Neuron‎
  • 2011‎

Part of the inflammatory response in Alzheimer's disease (AD) is the upregulation of the inducible nitric oxide synthase (NOS2) resulting in increased NO production. NO contributes to cell signaling by inducing posttranslational protein modifications. Under pathological conditions there is a shift from the signal transducing actions to the formation of protein tyrosine nitration by secondary products like peroxynitrite and nitrogen dioxide. We identified amyloid β (Aβ) as an NO target, which is nitrated at tyrosine 10 (3NTyr(10)-Aβ). Nitration of Aβ accelerated its aggregation and was detected in the core of Aβ plaques of APP/PS1 mice and AD brains. NOS2 deficiency or oral treatment with the NOS2 inhibitor L-NIL strongly decreased 3NTyr(10)-Aβ, overall Aβ deposition and cognitive dysfunction in APP/PS1 mice. Further, injection of 3NTyr(10)-Aβ into the brain of young APP/PS1 mice induced β-amyloidosis. This suggests a disease modifying role for NOS2 in AD and therefore represents a potential therapeutic target.


Directional theta coherence in prefrontal cortical to amygdalo-hippocampal pathways signals fear extinction.

  • Jörg Lesting‎ et al.
  • PloS one‎
  • 2013‎

Theta oscillations are considered crucial mechanisms in neuronal communication across brain areas, required for consolidation and retrieval of fear memories. One form of inhibitory learning allowing adaptive control of fear memory is extinction, a deficit of which leads to maladaptive fear expression potentially leading to anxiety disorders. Behavioral responses after extinction training are thought to reflect a balance of recall from extinction memory and initial fear memory traces. Therefore, we hypothesized that the initial fear memory circuits impact behavioral fear after extinction, and more specifically, that the dynamics of theta synchrony in these pathways signal the individual fear response. Simultaneous multi-channel local field and unit recordings were obtained from the infralimbic prefrontal cortex, the hippocampal CA1 and the lateral amygdala in mice. Data revealed that the pattern of theta coherence and directionality within and across regions correlated with individual behavioral responses. Upon conditioned freezing, units were phase-locked to synchronized theta oscillations in these pathways, characterizing states of fear memory retrieval. When the conditioned stimulus evoked no fear during extinction recall, theta interactions were directional with prefrontal cortical spike firing leading hippocampal and amygdalar theta oscillations. These results indicate that the directional dynamics of theta-entrained activity across these areas guide changes in appraisal of threatening stimuli during fear memory and extinction retrieval. Given that exposure therapy involves procedures and pathways similar to those during extinction of conditioned fear, one therapeutical extension might be useful that imposes artificial theta activity to prefrontal cortical-amygdalo-hippocampal pathways that mimics the directionality signaling successful extinction recall.


Regional specificity of cortico-thalamic coupling strength and directionality during waxing and waning of spike and wave discharges.

  • Annika Lüttjohann‎ et al.
  • Scientific reports‎
  • 2019‎

Spike-wave discharges (SWDs) on the EEG during absence epilepsy are waxing and waning stages of corticothalamic hypersynchrony. While the somatosensory cortex contains an epileptic focus, the role of thalamic nuclei in SWD generation is debated. Here we assess the contribution of distinct thalamic nuclei through multiple-site unit recordings in a genetic rat model of absence epilepsy and cross-correlation analysis, revealing coupling strength and directionality of neuronal activity at high temporal resolution. Corticothalamic coupling increased and decreased during waxing and waning of SWD, respectively. A cortical drive on either sensory or higher order thalamic nuclei distinguished between onset and offset of SWD, respectively. Intrathalamic coupling steadily increased during maintained SWD activity, peaked at SWD offset, and subsequently displayed a sharp decline to baseline. The peak in intrathalamic coupling coincided with a sharp increase in coupling strength between reticular thalamic nucleus and somatosensory cortex. This increased influence of the inhibitory reticular thalamic nucleus is suggested to serve as a break for SWD activity. Overall, the data extend the cortical focus theory of absence epilepsy by identifying a regionally specific cortical lead over distinct thalamic nuclei, particularly also during waning of generalized epileptic discharges, thereby revealing a potential window and location for intervention.


Modulation of Hyperpolarization-Activated Inward Current and Thalamic Activity Modes by Different Cyclic Nucleotides.

  • Maia Datunashvili‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2018‎

The hyperpolarization-activated inward current, Ih, plays a key role in the generation of rhythmic activities in thalamocortical (TC) relay neurons. Cyclic nucleotides, like 3',5'-cyclic adenosine monophosphate (cAMP), facilitate voltage-dependent activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels by shifting the activation curve of Ih to more positive values and thereby terminating the rhythmic burst activity. The role of 3',5'-cyclic guanosine monophosphate (cGMP) in modulation of Ih is not well understood. To determine the possible role of the nitric oxide (NO)-sensitive cGMP-forming guanylyl cyclase 2 (NO-GC2) in controlling the thalamic Ih, the voltage-dependency and cGMP/cAMP-sensitivity of Ih was analyzed in TC neurons of the dorsal part of the lateral geniculate nucleus (dLGN) in wild type (WT) and NO-GC2-deficit (NO-GC2-/-) mice. Whole cell voltage clamp recordings in brain slices revealed a more hyperpolarized half maximal activation (V1/2) of Ih in NO-GC2-/- TC neurons compared to WT. Different concentrations of 8-Br-cAMP/8-Br-cGMP induced dose-dependent positive shifts of V1/2 in both strains. Treatment of WT slices with lyase enzyme (adenylyl and guanylyl cyclases) inhibitors (SQ22536 and ODQ) resulted in further hyperpolarized V1/2. Under current clamp conditions NO-GC2-/- neurons exhibited a reduction in the Ih-dependent voltage sag and reduced action potential firing with hyperpolarizing and depolarizing current steps, respectively. Intrathalamic rhythmic bursting activity in brain slices and in a simplified mathematical model of the thalamic network was reduced in the absence of NO-GC2. In freely behaving NO-GC2-/- mice, delta and theta band activity was enhanced during active wakefulness (AW) as well as rapid eye movement (REM) sleep in cortical local field potential (LFP) in comparison to WT. These findings indicate that cGMP facilitates Ih activation and contributes to a tonic activity in TC neurons. On the network level basal cGMP production supports fast rhythmic activity in the cortex.


Combined treatment with a BACE inhibitor and anti-Aβ antibody gantenerumab enhances amyloid reduction in APPLondon mice.

  • Helmut Jacobsen‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2014‎

Therapeutic approaches for prevention or reduction of amyloidosis are currently a main objective in basic and clinical research on Alzheimer's disease. Among the agents explored in clinical trials are anti-Aβ peptide antibodies and secretase inhibitors. Most anti-Aβ antibodies are considered to act via inhibition of amyloidosis and enhanced clearance of existing amyloid, although secretase inhibitors reduce the de novo production of Aβ. Limited information is currently available on the efficacy and potential advantages of combinatorial antiamyloid treatment. We performed a chronic study in APPLondon transgenic mice that received treatment with anti-Aβ antibody gantenerumab and BACE inhibitor RO5508887, either as mono- or combination treatment. Treatment aimed to evaluate efficacy on amyloid progression, similar to preexisting amyloidosis as present in Alzheimer's disease patients. Mono-treatments with either compound caused a dose-dependent reduction of total brain Aβ and amyloid burden. Combination treatment with both compounds significantly enhanced the antiamyloid effect. The observed combination effect was most pronounced for lowering of amyloid plaque load and plaque number, which suggests effective inhibition of de novo plaque formation. Moreover, significantly enhanced clearance of pre-existing amyloid plaques was observed when gantenerumab was coadministered with RO5508887. BACE inhibition led to a significant time- and dose-dependent decrease in CSF Aβ, which was not observed for gantenerumab treatment. Our results demonstrate that combining these two antiamyloid agents enhances overall efficacy and suggests that combination treatments may be of clinical relevance.


Get the rhythm: modeling neuronal activity.

  • Patrick Meuth‎ et al.
  • Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience‎
  • 2005‎

The simulation system NEURON is a common research tool for constructing structurally and functionally realistic models of neuronal systems. NEURON allows the development of simulations at any level of complexity, from subcellular components to single cells, cellular networks, and system-level models. Focusing on an in vitro cell model of a single, acutely isolated thalamic neuron, we used the simulation environment to address and to discuss the following questions in an undergraduate course: (i) Which parts are required to design a single compartment with passive electrical properties? (ii) Which components are necessary to model a single action potential or a train of action potentials? (iii) What can we learn from voltage-clamp and current-clamp experiments? (iv) What kind of cellular parameters are accessible from the modeling data? (v) What are the differences between single-compartment models and multi-compartment models? (vi) What are the advantages and disadvantages of artificial cell models? (vii) Can realistic modeling open up new strategies to discover the way that neurons process information?


Social defeat: impact on fear extinction and amygdala-prefrontal cortical theta synchrony in 5-HTT deficient mice.

  • Venu Narayanan‎ et al.
  • PloS one‎
  • 2011‎

Emotions, such as fear and anxiety, can be modulated by both environmental and genetic factors. One genetic factor is for example the genetically encoded variation of the serotonin transporter (5-HTT) expression. In this context, the 5-HTT plays a key role in the regulation of central 5-HT neurotransmission, which is critically involved in the physiological regulation of emotions including fear and anxiety. However, a systematic study which examines the combined influence of environmental and genetic factors on fear-related behavior and the underlying neurophysiological basis is missing. Therefore, in this study we used the 5-HTT-deficient mouse model for studying emotional dysregulation to evaluate consequences of genotype specific disruption of 5-HTT function and repeated social defeat for fear-related behaviors and corresponding neurophysiological activities in the lateral amygdala (LA) and infralimbic region of the medial prefrontal cortex (mPFC) in male 5-HTT wild-type (+/+), homo- (-/-) and heterozygous (+/-) mice. Naive males and experienced losers (generated in a resident-intruder paradigm) of all three genotypes, unilaterally equipped with recording electrodes in LA and mPFC, underwent a Pavlovian fear conditioning. Fear memory and extinction of conditioned fear was examined while recording neuronal activity simultaneously with fear-related behavior. Compared to naive 5-HTT+/+ and +/- mice, 5-HTT-/- mice showed impaired recall of extinction. In addition, 5-HTT-/- and +/- experienced losers showed delayed extinction learning and impaired recall of extinction. Impaired behavioral responses were accompanied by increased theta synchronization between the LA and mPFC during extinction learning in 5-HTT-/- and +/- losers. Furthermore, impaired extinction recall was accompanied with increased theta synchronization in 5-HTT-/- naive and in 5-HTT-/- and +/- loser mice. In conclusion, extinction learning and memory of conditioned fear can be modulated by both the 5-HTT gene activity and social experiences in adulthood, accompanied by corresponding alterations of the theta activity in the amygdala-prefrontal cortex network.


Specific expression of low-voltage-activated calcium channel isoforms and splice variants in thalamic local circuit interneurons.

  • Tilman Broicher‎ et al.
  • Molecular and cellular neurosciences‎
  • 2007‎

It has been suggested that the specific burst firing patterns of thalamic neurons reflect differential expression of low-voltage-activated (LVA) Ca(2+) channel subtypes and their splice variants. By combining electrophysiological, molecular biological, immunological, and computational modeling techniques we here show that diverging LVA Ca(2+) currents of thalamocortical relay (TC) and GABAergic interneurons of the dLGN correlate with a differential expression of LVA Ca(2+) channel splice variations and isoforms (alpha1G-a in TC; alpha1G-bc and alpha1I in interneurons). Implementation of the observed LVA Ca(2+) current differences into a TC neuron model changed the burst firing from TC-like to interneuron-like. We conclude that alternative splicing of the alpha1G isoform in dLGN TC and interneurons, and the exclusive expression of the alpha1I isoform in interneurons play a prominent role in setting the different LVA Ca(2+) current properties of TC and interneurons, which critically contribute to the diverging burst firing behavior of these neurons.


Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer's Disease.

  • Henrik H Hansen‎ et al.
  • PloS one‎
  • 2016‎

One of the major histopathological hallmarks of Alzheimer's disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer's disease carrying different clinical APP/PS1 mutations, i.e. the 'London' (hAPPLon/PS1A246E) and 'Swedish' mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: