Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

A novel GABA(A) alpha 5 receptor inhibitor with therapeutic potential.

  • István Ling‎ et al.
  • European journal of pharmacology‎
  • 2015‎

Novel 2,3-benzodiazepine and related isoquinoline derivatives, substituted at position 1 with a 2-benzothiophenyl moiety, were synthesized to produce compounds that potently inhibited the action of GABA on heterologously expressed GABAA receptors containing the alpha 5 subunit (GABAA α5), with no apparent affinity for the benzodiazepine site. Substitutions of the benzothiophene moiety at position 4 led to compounds with drug-like properties that were putative inhibitors of extra-synaptic GABAA α5 receptors and had substantial blood-brain barrier permeability. Initial characterization in vivo showed that 8-methyl-5-[4-(trifluoromethyl)-1-benzothiophen-2-yl]-1,9-dihydro-2H-[1,3]oxazolo[4,5-h][2,3]benzodiazepin-2-one was devoid of sedative, pro-convulsive or motor side-effects, and enhanced the performance of rats in the object recognition test. In summary, we have discovered a first-in-class GABA-site inhibitor of extra-synaptic GABAA α5 receptors that has promising drug-like properties and warrants further development.


Mutations in the Gabrb1 gene promote alcohol consumption through increased tonic inhibition.

  • Quentin M Anstee‎ et al.
  • Nature communications‎
  • 2013‎

Alcohol dependence is a common, complex and debilitating disorder with genetic and environmental influences. Here we show that alcohol consumption increases following mutations to the γ-aminobutyric acidA receptor (GABAAR) β1 subunit gene (Gabrb1). Using N-ethyl-N-nitrosourea mutagenesis on an alcohol-averse background (F1 BALB/cAnN x C3H/HeH), we develop a mouse model exhibiting strong heritable preference for ethanol resulting from a dominant mutation (L285R) in Gabrb1. The mutation causes spontaneous GABA ion channel opening and increases GABA sensitivity of recombinant GABAARs, coupled to increased tonic currents in the nucleus accumbens, a region long-associated with alcohol reward. Mutant mice work harder to obtain ethanol, and are more sensitive to alcohol intoxication. Another spontaneous mutation (P228H) in Gabrb1 also causes high ethanol consumption accompanied by spontaneous GABA ion channel opening and increased accumbal tonic current. Our results provide a new and important link between GABAAR function and increased alcohol consumption that could underlie some forms of alcohol abuse.


During postnatal development endogenous neurosteroids influence GABA-ergic neurotransmission of mouse cortical neurons.

  • Adam R Brown‎ et al.
  • Neuropharmacology‎
  • 2016‎

As neuronal development progresses, GABAergic synaptic transmission undergoes a defined program of reconfiguration. For example, GABAA receptor (GABAAR)-mediated synaptic currents, (miniature inhibitory postsynaptic currents; mIPSCs), which initially exhibit a relatively slow decay phase, become progressively reduced in duration, thereby supporting the temporal resolution required for mature network activity. Here we report that during postnatal development of cortical layer 2/3 pyramidal neurons, GABAAR-mediated phasic inhibition is influenced by a resident neurosteroid tone, which wanes in the second postnatal week, resulting in the brief phasic events characteristic of mature neuronal signalling. Treatment of cortical slices with the immediate precursor of 5α-pregnan-3α-ol-20-one (5α3α), the GABAAR-inactive 5α-dihydroprogesterone, (5α-DHP), greatly prolonged the mIPSCs of P20 pyramidal neurons, demonstrating these more mature neurons retain the capacity to synthesize GABAAR-active neurosteroids, but now lack the endogenous steroid substrate. Previously, such developmental plasticity of phasic inhibition was ascribed to the expression of synaptic GABAARs incorporating the α1 subunit. However, the duration of mIPSCs recorded from L2/3 cortical neurons derived from α1 subunit deleted mice, were similarly under the developmental influence of a neurosteroid tone. In addition to principal cells, synaptic GABAARs of L2/3 interneurons were modulated by native neurosteroids in a development-dependent manner. In summary, local neurosteroids influence synaptic transmission during a crucial period of cortical neurodevelopment, findings which may be of importance for establishing normal network connectivity.


Selective inhibition of extra-synaptic α5-GABAA receptors by S44819, a new therapeutic agent.

  • Lori-An Etherington‎ et al.
  • Neuropharmacology‎
  • 2017‎

In the mammalian central nervous system (CNS) GABAA receptors (GABAARs) mediate neuronal inhibition and are important therapeutic targets. GABAARs are composed of 5 subunits, drawn from 19 proteins, underpinning expression of 20-30 GABAAR subtypes. In the CNS these isoforms are heterogeneously expressed and exhibit distinct physiological and pharmacological properties. We report the discovery of S44819, a novel tricyclic oxazolo-2,3-benzodiazepine-derivative, that selectively inhibits α5-subunit-containing GABAARs (α5-GABAARs). Current α5-GABAAR inhibitors bind to the "benzodiazepine site". However, in HEK293 cells expressing recombinant α5-GABAARs, S44819 had no effect on 3H-flumazenil binding, but displaced the GABAAR agonist 3H-muscimol and competitively inhibited the GABA-induced responses. Importantly, we reveal that the α5-subunit selectivity is uniquely governed by amino acid residues within the α-subunit F-loop, a region associated with GABA binding. In mouse hippocampal CA1 neurons, S44819 enhanced long-term potentiation (LTP), blocked a tonic current mediated by extrasynaptic α5-GABAARs, but had no effect on synaptic GABAARs. In mouse thalamic neurons, S44819 had no effect on the tonic current mediated by δ-GABAARs, or on synaptic (α1β2γ2) GABAARs. In rats, S44819 enhanced object recognition memory and reversed scopolamine-induced impairment of working memory in the eight-arm radial maze. In conclusion, S44819 is a first in class compound that uniquely acts as a potent, competitive, selective antagonist of recombinant and native α5-GABAARs. Consequently, S44819 enhances hippocampal synaptic plasticity and exhibits pro-cognitive efficacy. Given this profile, S44819 may improve cognitive function in neurodegenerative disorders and facilitate post-stroke recovery.


α4-Containing GABAA Receptors on DRD2 Neurons of the Nucleus Accumbens Mediate Instrumental Responding for Conditioned Reinforcers and Its Potentiation by Cocaine.

  • Tom Macpherson‎ et al.
  • eNeuro‎
  • 2023‎

Extrasynaptic GABAA receptors (GABAARs) composed of α4, β, and δ subunits mediate GABAergic tonic inhibition and are potential molecular targets in the modulation of behavioral responses to natural and drug rewards. These GABAARs are highly expressed within the nucleus accumbens (NAc), where they influence the excitability of the medium spiny neurons. Here, we explore their role in modulating behavioral responses to food-conditioned cues and the behavior-potentiating effects of cocaine. α4-Subunit constitutive knock-out mice (α4-/-) showed higher rates of instrumental responding for reward-paired stimuli in a test of conditioned reinforcement (CRf). A similar effect was seen following viral knockdown of GABAAR α4 subunits within the NAc. Local infusion of the α4βδ-GABAAR-preferring agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; Gaboxadol) into the NAc had no effect on responding when given alone but reduced cocaine potentiation of responding for conditioned reinforcers in wild-type, but not α4-/- mice. Finally, specific deletion of α4-subunits from dopamine D2, but not D1, receptor-expressing neurons (DRD2 and DRD1 neurons), mimicked the phenotype of the constitutive knockout, potentiating CRf responding, and blocking intra-accumbal THIP attenuation of cocaine-potentiated CRf responding. These data demonstrate that α4-GABAAR-mediated inhibition of DRD2 neurons reduces instrumental responding for a conditioned reinforcer and its potentiation by cocaine and emphasize the importance of GABAergic signaling within the NAc in mediating the effects of cocaine.


Dysfunctional astrocytic and synaptic regulation of hypothalamic glutamatergic transmission in a mouse model of early-life adversity: relevance to neurosteroids and programming of the stress response.

  • Benjamin G Gunn‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2013‎

Adverse early-life experiences, such as poor maternal care, program an abnormal stress response that may involve an altered balance between excitatory and inhibitory signals. Here, we explored how early-life stress (ELS) affects excitatory and inhibitory transmission in corticotrophin-releasing factor (CRF)-expressing dorsal-medial (mpd) neurons of the neonatal mouse hypothalamus. We report that ELS associates with enhanced excitatory glutamatergic transmission that is manifested as an increased frequency of synaptic events and increased extrasynaptic conductance, with the latter associated with dysfunctional astrocytic regulation of glutamate levels. The neurosteroid 5α-pregnan-3α-ol-20-one (5α3α-THPROG) is an endogenous, positive modulator of GABAA receptors (GABAARs) that is abundant during brain development and rises rapidly during acute stress, thereby enhancing inhibition to curtail stress-induced activation of the hypothalamic-pituitary-adrenocortical axis. In control mpd neurons, 5α3α-THPROG potently suppressed neuronal discharge, but this action was greatly compromised by prior ELS exposure. This neurosteroid insensitivity did not primarily result from perturbations of GABAergic inhibition, but rather arose functionally from the increased excitatory drive onto mpd neurons. Previous reports indicated that mice (dams) lacking the GABAAR δ subunit (δ(0/0)) exhibit altered maternal behavior. Intriguingly, δ(0/0) offspring showed some hallmarks of abnormal maternal care that were further exacerbated by ELS. Moreover, in common with ELS, mpd neurons of δ(0/0) pups exhibited increased synaptic and extrasynaptic glutamatergic transmission and consequently a blunted neurosteroid suppression of neuronal firing. This study reveals that increased synaptic and tonic glutamatergic transmission may be a common maladaptation to ELS, leading to enhanced excitation of CRF-releasing neurons, and identifies neurosteroids as putative early regulators of the stress neurocircuitry.


Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo-axonic synapses on CA1 pyramidal cells.

  • Patrizia Panzanelli‎ et al.
  • The Journal of physiology‎
  • 2011‎

Pyramidal cells express various GABA(A) receptor (GABA(A)R) subtypes, possibly to match inputs from functionally distinct interneurons targeting specific subcellular domains. Postsynaptic anchoring of GABA(A)Rs is ensured by a complex interplay between the scaffolding protein gephyrin, neuroligin-2 and collybistin. Direct interactions between these proteins and GABA(A)R subunits might contribute to synapse-specific distribution of GABA(A)R subtypes. In addition, the dystrophin-glycoprotein complex, mainly localized at perisomatic synapses, regulates GABA(A)R postsynaptic clustering at these sites. Here, we investigated how the functional and molecular organization of GABAergic synapses in CA1 pyramidal neurons is altered in mice lacking the GABA(A)R α2 subunit (α2-KO). We report a marked, layer-specific loss of postsynaptic gephyrin and neuroligin-2 clusters, without changes in GABAergic presynaptic terminals. Whole-cell voltage-clamp recordings in slices from α2-KO mice show a 40% decrease in GABAergic mIPSC frequency, with unchanged amplitude and kinetics. Applying low/high concentrations of zolpidem to discriminate between α1- and α2/α3-GABA(A)Rs demonstrates that residual mIPSCs in α2-KO mice are mediated by α1-GABA(A)Rs. Immunofluorescence analysis reveals maintenance of α1-GABA(A)R and neuroligin-2 clusters, but not gephyrin clusters, in perisomatic synapses of mutant mice, along with a complete loss of these three markers on the axon initial segment. This striking subcellular difference correlates with the preservation of dystrophin clusters, colocalized with neuroligin-2 and α1-GABA(A)Rs on pyramidal cell bodies of mutant mice. Dystrophin was not detected on the axon initial segment in either genotype. Collectively, these findings reveal synapse-specific anchoring of GABA(A)Rs at postsynaptic sites and suggest that the dystrophin-glycoprotein complex contributes to stabilize α1-GABA(A)R and neuroligin-2, but not gephyrin, in perisomatic postsynaptic densities.


GABAA and glycine receptor-mediated transmission in rat lamina II neurones: relevance to the analgesic actions of neuroactive steroids.

  • Elizabeth A Mitchell‎ et al.
  • The Journal of physiology‎
  • 2007‎

Analgesic neurosteroids such as 5alpha-pregnan-3alpha-ol-20-one (5alpha3alpha) are potent selective endogenous modulators of the GABA(A) receptor (GABA(A)R) while certain synthetic derivatives (i.e. minaxolone) additionally enhance the function of recombinant glycine receptors (GlyR). Inhibitory transmission within the superficial dorsal horn has been implicated in mediating the analgesic actions of neurosteroids. However, the relative contribution played by synaptic and extrasynaptic receptors is unknown. In this study, we have compared the actions of 5alpha3alpha and minaxolone upon inhibitory transmission mediated by both GABA(A) and strychnine-sensitive GlyRs in lamina II neurones of juvenile (P15-21) rats. At the near physiological temperature of 35 degrees C and at a holding potential of -60 mV we recorded three kinetically distinct populations of miniature IPSCs (mIPSCs): GlyR-mediated, GABA(A)R-mediated and mixed GABA(A)R-GlyR mIPSCs, arising from the corelease of both inhibitory neurotransmitters. In addition, sequential application of strychnine and bicuculline revealed a small (5.2 +/- 1.0 pA) GlyR- but not a GABA(A)R-mediated tonic conductance. 5alpha3alpha (1-10 microm) prolonged GABA(A)R and mixed mIPSCs in a concentration-dependent manner but was without effect upon GlyR mIPSCs. In contrast, minaxolone (1-10 microm) prolonged the decay of GlyR mIPSCs and, additionally, was approximately 10-fold more potent than 5alpha3alpha upon GABA(A)R mIPSCs. However, 5alpha3alpha and minaxolone (1 microm) evoked a similar bicuculline-sensitive inhibitory conductance, indicating that the extrasynaptic GABA(A)Rs do not discriminate between these two steroids. Furthermore, approximately 92% of the effect of 1 microm 5alpha3alpha upon GABAergic inhibition could be accounted for by its action upon the extrasynaptic conductance. These findings are relevant to modulation of inhibitory circuits within spinally mediated pain pathways and suggest that extrasynaptic GABA(A)Rs may represent a relevant molecular target for the analgesic actions of neurosteroids.


The expression of GABAA beta subunit isoforms in synaptic and extrasynaptic receptor populations of mouse dentate gyrus granule cells.

  • Murray B Herd‎ et al.
  • The Journal of physiology‎
  • 2008‎

The subunit composition of GABA(A) receptors influences their biophysical and pharmacological properties, dictates neuronal location and the interaction with associated proteins, and markedly influences the impact of intracellular biochemistry. The focus has been on alpha and gamma subunits, with little attention given to beta subunits. Dentate gyrus granule cells (DGGCs) express all three beta subunit isoforms and exhibit both synaptic and extrasynaptic receptors that mediate 'phasic' and 'tonic' transmission, respectively. To investigate the subcellular distribution of the beta subunits we have utilized the patch-clamp technique to compare the properties of 'tonic' and miniature inhibitory postsynaptic currents (mIPSCs) recorded from DGGCs of hippocampal slices of P20-26 wild-type (WT), beta(2)(-/-), beta(2N265S) (etomidate-insensitive), alpha(1)(-/-) and delta(-/-) mice. Deletion of either the beta(2) or the delta subunit produced a significant reduction of the tonic current and attenuated the increase of this current induced by the delta subunit-preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP). By contrast, mIPSCs were not influenced by deletion of these genes. Enhancement of the tonic current by the beta(2/3) subunit-selective agent etomidate was significantly reduced for DGGCs derived from beta(2N265S) mice, whereas this manipulation had no effect on the prolongation of mIPSCs produced by this anaesthetic. Collectively, these observations, together with previous studies on alpha(4)(-/-) mice, identify a population of extrasynaptic alpha(4)beta(2)delta receptors, whereas synaptic GABA(A) receptors appear to primarily incorporate the beta(3) subunit. A component of the tonic current is diazepam sensitive and is mediated by extrasynaptic receptors incorporating alpha(5) and gamma(2) subunits. Deletion of the beta(2) subunit had no effect on the diazepam-induced current and therefore these extrasynaptic receptors do not contain this subunit. The unambiguous identification of these distinct pools of synaptic and extrasynaptic GABA(A) receptors should aid our understanding of how they act in harmony, to regulate hippocampal signalling in health and disease.


Inhibition of thalamic excitability by 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol: a selective role for delta-GABA(A) receptors.

  • Murray B Herd‎ et al.
  • The European journal of neuroscience‎
  • 2009‎

The sedative and hypnotic agent 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol (THIP) is a GABA(A) receptor (GABA(A)R) agonist that preferentially activates delta-subunit-containing GABA(A)Rs (delta-GABA(A)Rs). To clarify the role of delta-GABA(A)Rs in mediating the sedative actions of THIP, we utilized mice lacking the alpha(1)- or delta-subunit in a combined electrophysiological and behavioural analysis. Whole-cell patch-clamp recordings were obtained from ventrobasal thalamic nucleus (VB) neurones at a holding potential of -60 mV. Application of bicuculline to wild-type (WT) VB neurones revealed a GABA(A)R-mediated tonic current of 92 +/- 19 pA, which was greatly reduced (13 +/- 5 pA) for VB neurones of delta(0/0) mice. Deletion of the delta- but not the alpha(1)-subunit dramatically reduced the THIP (1 mum)-induced inward current in these neurones (WT, -309 +/- 23 pA; delta(0/0), -18 +/- 3 pA; alpha(1) (0/0), -377 +/- 45 pA). Furthermore, THIP selectively decreased the excitability of WT and alpha(1) (0/0) but not delta(0/0) VB neurones. THIP did not affect the properties of miniature inhibitory post-synaptic currents in any of the genotypes. No differences in rotarod performance and locomotor activity were observed across the three genotypes. In WT mice, performance of these behaviours was impaired by THIP in a dose-dependent manner. The effect of THIP on rotarod performance was blunted for delta(0/0) but not alpha(1) (0/0) mice. We previously reported that deletion of the alpha(1)-subunit abolished synaptic GABA(A) responses of VB neurones. Therefore, collectively, these findings suggest that extrasynaptic delta-GABA(A)Rs vs. synaptic alpha(1)-subunit-containing GABA(A)Rs of thalamocortical neurones represent an important molecular target underpinning the sedative actions of THIP.


Developmentally regulated neurosteroid synthesis enhances GABAergic neurotransmission in mouse thalamocortical neurones.

  • Adam R Brown‎ et al.
  • The Journal of physiology‎
  • 2015‎

During neuronal development synaptic events mediated by GABAA receptors are progressively reduced in their duration, allowing for rapid and precise network function. Here we focused on ventrobasal thalamocortical neurones, which contribute to behaviourally relevant oscillations between thalamus and cortex. We demonstrate that the developmental decrease in the duration of inhibitory phasic events results predominantly from a precisely timed loss of locally produced neurosteroids, which act as positive allosteric modulators of the GABAA receptor. The mature thalamus retains the ability to synthesise neurosteroids, thus preserving the capacity to enhance both phasic and tonic inhibition, mediated by synaptic and extrasynaptic GABAA receptors, respectively, in physiological and pathophysiological scenarios associated with perturbed neurosteroid levels. Our data establish a potent, endogenous mechanism to locally regulate the GABAA receptor function and thereby influence thalamocortical activity. During brain development the duration of miniature inhibitory postsynaptic currents (mIPSCs) mediated by GABAA receptors (GABAA Rs) progressively reduces, to accommodate the temporal demands required for precise network activity. Conventionally, this synaptic plasticity results from GABAA R subunit reorganisation. In particular, in certain developing neurones synaptic α2-GABAA Rs are replaced by α1-GABAA Rs. However, in thalamocortical neurones of the mouse ventrobasal (VB) thalamus, the major alteration to mIPSC kinetics occurs on postnatal (P) day 10, some days prior to the GABAA R isoform change. Here, whole-cell voltage-clamp recordings from VB neurones of mouse thalamic slices revealed that early in postnatal development (P7-P8), the mIPSC duration is prolonged by local neurosteroids acting in a paracrine or autocrine manner to enhance GABAA R function. However, by P10, this neurosteroid 'tone' rapidly dissipates, thereby producing brief mIPSCs. This plasticity results from a lack of steroid substrate as pre-treatment of mature thalamic slices (P20-24) with the GABAA R-inactive precursor 5α-dihydroprogesterone (5α-DHP) resulted in markedly prolonged mIPSCs and a greatly enhanced tonic conductance, mediated by synaptic and extrasynaptic GABAA Rs, respectively. In summary, endogenous neurosteroids profoundly influence GABAergic neurotransmission in developing VB neurones and govern a transition from slow to fast phasic synaptic events. Furthermore, the retained capacity for steroidogenesis in the mature thalamus raises the prospect that certain physiological or pathophysiological conditions may trigger neurosteroid neosynthesis, thereby providing a local mechanism for fine-tuning neuronal excitability.


Early stress-induced impaired microglial pruning of excitatory synapses on immature CRH-expressing neurons provokes aberrant adult stress responses.

  • Jessica L Bolton‎ et al.
  • Cell reports‎
  • 2022‎

Several mental illnesses, characterized by aberrant stress reactivity, often arise after early-life adversity (ELA). However, it is unclear how ELA affects stress-related brain circuit maturation, provoking these enduring vulnerabilities. We find that ELA increases functional excitatory synapses onto stress-sensitive hypothalamic corticotropin-releasing hormone (CRH)-expressing neurons, resulting from disrupted developmental synapse pruning by adjacent microglia. Microglial process dynamics and synaptic element engulfment were attenuated in ELA mice, associated with deficient signaling of the microglial phagocytic receptor MerTK. Accordingly, selective chronic chemogenetic activation of ELA microglia increased microglial process dynamics and reduced excitatory synapse density to control levels. Notably, selective early-life activation of ELA microglia normalized adult acute and chronic stress responses, including stress-induced hormone secretion and behavioral threat responses, as well as chronic adrenal hypertrophy of ELA mice. Thus, microglial actions during development are powerful contributors to mechanisms by which ELA sculpts the connectivity of stress-regulating neurons, promoting vulnerability to stress and stress-related mental illnesses.


Tonic inhibition of accumbal spiny neurons by extrasynaptic α4βδ GABAA receptors modulates the actions of psychostimulants.

  • Edward P Maguire‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2014‎

Within the nucleus accumbens (NAc), synaptic GABAA receptors (GABAARs) mediate phasic inhibition of medium spiny neurons (MSNs) and influence behavioral responses to cocaine. We demonstrate that both dopamine D1- and D2-receptor-expressing MSNs (D-MSNs) additionally harbor extrasynaptic GABAARs incorporating α4, β, and δ subunits that mediate tonic inhibition, thereby influencing neuronal excitability. Both the selective δ-GABAAR agonist THIP and DS2, a selective positive allosteric modulator, greatly increased the tonic current of all MSNs from wild-type (WT), but not from δ(-/-) or α4(-/-) mice. Coupling dopamine and tonic inhibition, the acute activation of D1 receptors (by a selective agonist or indirectly by amphetamine) greatly enhanced tonic inhibition in D1-MSNs but not D2-MSNs. In contrast, prolonged D2 receptor activation modestly reduced the tonic conductance of D2-MSNs. Behaviorally, WT and constitutive α4(-/-) mice did not differ in their expression of cocaine-conditioned place preference (CPP). Importantly, however, mice with the α4 deletion specific to D1-expressing neurons (α4(D1-/-)) showed increased CPP. Furthermore, THIP administered systemically or directly into the NAc of WT, but not α4(-/-) or α4(D1-/-) mice, blocked cocaine enhancement of CPP. In comparison, α4(D2-/-) mice exhibited normal CPP, but no cocaine enhancement. In conclusion, dopamine modulation of GABAergic tonic inhibition of D1- and D2-MSNs provides an intrinsic mechanism to differentially affect their excitability in response to psychostimulants and thereby influence their ability to potentiate conditioned reward. Therefore, α4βδ GABAARs may represent a viable target for the development of novel therapeutics to better understand and influence addictive behaviors.


Developmental maturation of synaptic and extrasynaptic GABAA receptors in mouse thalamic ventrobasal neurones.

  • Dianne R Peden‎ et al.
  • The Journal of physiology‎
  • 2008‎

Thalamic ventrobasal (VB) relay neurones express multiple GABA(A) receptor subtypes mediating phasic and tonic inhibition. During postnatal development, marked changes in subunit expression occur, presumably reflecting changes in functional properties of neuronal networks. The aims of this study were to characterize the properties of synaptic and extrasynaptic GABA(A) receptors of developing VB neurones and investigate the role of the alpha(1) subunit during maturation of GABA-ergic transmission, using electrophysiology and immunohistochemistry in wild type (WT) and alpha(1)(0/0) mice and mice engineered to express diazepam-insensitive receptors (alpha(1H101R), alpha(2H101R)). In immature brain, rapid (P8/9-P10/11) developmental change to mIPSC kinetics and increased expression of extrasynaptic receptors (P8-27) formed by the alpha(4) and delta subunit occurred independently of the alpha(1) subunit. Subsequently (> or = P15), synaptic alpha(2) subunit/gephyrin clusters of WT VB neurones were replaced by those containing the alpha(1) subunit. Surprisingly, in alpha(1)(0/0) VB neurones the frequency of mIPSCs decreased between P12 and P27, because the alpha(2) subunit also disappeared from these cells. The loss of synaptic GABA(A) receptors led to a delayed disruption of gephyrin clusters. Despite these alterations, GABA-ergic terminals were preserved, perhaps maintaining tonic inhibition. These results demonstrate that maturation of synaptic and extrasynaptic GABA(A) receptors in VB follows a developmental programme independent of the alpha(1) subunit. Changes to synaptic GABA(A) receptor function and the increased expression of extrasynaptic GABA(A) receptors represent two distinct mechanisms for fine-tuning GABA-ergic control of thalamic relay neurone activity during development.


Early-life adversity selectively impairs α2-GABAA receptor expression in the mouse nucleus accumbens and influences the behavioral effects of cocaine.

  • Scott J Mitchell‎ et al.
  • Neuropharmacology‎
  • 2018‎

Haplotypes of the Gabra2 gene encoding the α2-subunit of the GABAA receptor (GABAAR) are associated with drug abuse, suggesting that α2-GABAARs may play an important role in the circuitry underlying drug misuse. The genetic association of Gabra2 haplotypes with cocaine addiction appears to be evident primarily in individuals who had experienced childhood trauma. Given this association of childhood trauma, cocaine abuse and the Gabra2 haplotypes, we have explored in a mouse model of early life adversity (ELA) whether such events influence the behavioral effects of cocaine and if, as suggested by the human studies, α2-GABAARs in the nucleus accumbens (NAc) are involved in these perturbed behaviors. In adult mice prior ELA caused a selective decrease of accumbal α2-subunit mRNA, resulting in a selective decrease in the number and size of the α2-subunit (but not the α1-subunit) immunoreactive clusters in NAc core medium spiny neurons (MSNs). Functionally, in adult MSNs ELA decreased the amplitude and frequency of GABAAR-mediated miniature inhibitory postsynaptic currents (mIPSCs), a profile similar to that of α2 "knock-out" (α2-/-) mice. Behaviourally, adult male ELA and α2-/- mice exhibited an enhanced locomotor response to acute cocaine and blunted sensitisation upon repeated cocaine administration, when compared to their appropriate controls. Collectively, these findings reveal a neurobiological mechanism which may relate to the clinical observation that early trauma increases the risk for substance abuse disorder (SAD) in individuals harbouring haplotypic variations in the Gabra2 gene.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: