Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Atrx inactivation drives disease-defining phenotypes in glioma cells of origin through global epigenomic remodeling.

  • Carla Danussi‎ et al.
  • Nature communications‎
  • 2018‎

Mutational inactivation of the SWI/SNF chromatin regulator ATRX occurs frequently in gliomas, the most common primary brain tumors. Whether and how ATRX deficiency promotes oncogenesis by epigenomic dysregulation remains unclear, despite its recent implication in both genomic instability and telomere dysfunction. Here we report that Atrx loss recapitulates characteristic disease phenotypes and molecular features in putative glioma cells of origin, inducing cellular motility although also shifting differentiation state and potential toward an astrocytic rather than neuronal histiogenic profile. Moreover, Atrx deficiency drives widespread shifts in chromatin accessibility, histone composition, and transcription in a distribution almost entirely restricted to genomic sites normally bound by the protein. Finally, direct gene targets of Atrx that mediate specific Atrx-deficient phenotypes in vitro exhibit similarly selective misexpression in ATRX-mutant human gliomas. These findings demonstrate that ATRX deficiency and its epigenomic sequelae are sufficient to induce disease-defining oncogenic phenotypes in appropriate cellular and molecular contexts.


Compromised genomic integrity impedes muscle growth after Atrx inactivation.

  • Michael S Huh‎ et al.
  • The Journal of clinical investigation‎
  • 2012‎

ATR-X syndrome is a severe intellectual disability disorder caused by mutations in the ATRX gene. Many ancillary clinical features are attributed to CNS deficiencies, yet most patients have muscle hypotonia, delayed ambulation, or kyphosis, pointing to an underlying skeletal muscle defect. Here, we identified a cell-intrinsic requirement for Atrx in postnatal muscle growth and regeneration in mice. Mice with skeletal muscle-specific Atrx conditional knockout (Atrx cKO mice) were viable, but by 3 weeks of age presented hallmarks of underdeveloped musculature, including kyphosis, 20% reduction in body mass, and 34% reduction in muscle fiber caliber. Atrx cKO mice also demonstrated a marked regeneration deficit that was not due to fewer resident satellite cells or their inability to terminally differentiate. However, activation of Atrx-null satellite cells from isolated muscle fibers resulted in a 9-fold reduction in myoblast expansion, caused by delayed progression through mid to late S phase. While in S phase, Atrx colocalized specifically to late-replicating chromatin, and its loss resulted in rampant signs of genomic instability. These observations support a model in which Atrx maintains chromatin integrity during the rapid developmental growth of a tissue.


Snf2l regulates Foxg1-dependent progenitor cell expansion in the developing brain.

  • Darren J Yip‎ et al.
  • Developmental cell‎
  • 2012‎

Balancing progenitor cell self-renewal and differentiation is essential for brain development and is regulated by the activity of chromatin remodeling complexes. Nevertheless, linking chromatin changes to specific pathways that control cortical histogenesis remains a challenge. Here we identify a genetic interaction between the chromatin remodeler Snf2l and Foxg1, a key regulator of neurogenesis. Snf2l mutant mice exhibit forebrain hypercellularity arising from increased Foxg1 expression, increased progenitor cell expansion, and delayed differentiation. We demonstrate that Snf2l binds to the Foxg1 locus at midneurogenesis and that the phenotype is rescued by reducing Foxg1 dosage, thus revealing that Snf2l and Foxg1 function antagonistically to regulate brain size.


Snf2h Drives Chromatin Remodeling to Prime Upper Layer Cortical Neuron Development.

  • Matías Alvarez-Saavedra‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2019‎

Alterations in the homeostasis of either cortical progenitor pool, namely the apically located radial glial (RG) cells or the basal intermediate progenitors (IPCs) can severely impair cortical neuron production. Such changes are reflected by microcephaly and are often associated with cognitive defects. Genes encoding epigenetic regulators are a frequent cause of intellectual disability and many have been shown to regulate progenitor cell growth, including our inactivation of the Smarca1 gene encoding Snf2l, which is one of two ISWI mammalian orthologs. Loss of the Snf2l protein resulted in dysregulation of Foxg1 and IPC proliferation leading to macrocephaly. Here we show that inactivation of the closely related Smarca5 gene encoding the Snf2h chromatin remodeler is necessary for embryonic IPC expansion and subsequent specification of callosal projection neurons. Telencephalon-specific Smarca5 cKO embryos have impaired cell cycle kinetics and increased cell death, resulting in fewer Tbr2+ and FoxG1+ IPCs by mid-neurogenesis. These deficits give rise to adult mice with a dramatic reduction in Satb2+ upper layer neurons, and partial agenesis of the corpus callosum. Mice survive into adulthood but molecularly display reduced expression of the clustered protocadherin genes that may further contribute to altered dendritic arborization and a hyperactive behavioral phenotype. Our studies provide novel insight into the developmental function of Snf2h-dependent chromatin remodeling processes during brain development.


Impaired SNF2L Chromatin Remodeling Prolongs Accessibility at Promoters Enriched for Fos/Jun Binding Sites and Delays Granule Neuron Differentiation.

  • Laura R Goodwin‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2021‎

Chromatin remodeling proteins utilize the energy from ATP hydrolysis to mobilize nucleosomes often creating accessibility for transcription factors within gene regulatory elements. Aberrant chromatin remodeling has diverse effects on neuroprogenitor homeostasis altering progenitor competence, proliferation, survival, or cell fate. Previous work has shown that inactivation of the ISWI genes, Smarca5 (encoding Snf2h) and Smarca1 (encoding Snf2l) have dramatic effects on brain development. Smarca5 conditional knockout mice have reduced progenitor expansion and severe forebrain hypoplasia, with a similar effect on the postnatal growth of the cerebellum. In contrast, Smarca1 mutants exhibited enlarged forebrains with delayed progenitor differentiation and increased neuronal output. Here, we utilized cerebellar granule neuron precursor (GNP) cultures from Smarca1 mutant mice (Ex6DEL) to explore the requirement for Snf2l on progenitor homeostasis. The Ex6DEL GNPs showed delayed differentiation upon plating that was not attributed to changes in the Sonic Hedgehog pathway but was associated with overexpression of numerous positive effectors of proliferation, including targets of Wnt activation. Transcriptome analysis identified increased expression of Fosb and Fosl2 while ATACseq experiments identified a large increase in chromatin accessibility at promoters many enriched for Fos/Jun binding sites. Nonetheless, the elevated proliferation index was transient and the Ex6DEL cultures initiated differentiation with a high concordance in gene expression changes to the wild type cultures. Genes specific to Ex6DEL differentiation were associated with an increased activation of the ERK signaling pathway. Taken together, this data provides the first indication of how Smarca1 mutations alter progenitor cell homeostasis and contribute to changes in brain size.


PHF6-mediated transcriptional control of NSC via Ephrin receptors is impaired in the intellectual disability syndrome BFLS.

  • Dilan Rasool‎ et al.
  • EMBO reports‎
  • 2024‎

The plant homeodomain zinc-finger protein, PHF6, is a transcriptional regulator, and PHF6 germline mutations cause the X-linked intellectual disability (XLID) Börjeson-Forssman-Lehmann syndrome (BFLS). The mechanisms by which PHF6 regulates transcription and how its mutations cause BFLS remain poorly characterized. Here, we show genome-wide binding of PHF6 in the developing cortex in the vicinity of genes involved in central nervous system development and neurogenesis. Characterization of BFLS mice harbouring PHF6 patient mutations reveals an increase in embryonic neural stem cell (eNSC) self-renewal and a reduction of neural progenitors. We identify a panel of Ephrin receptors (EphRs) as direct transcriptional targets of PHF6. Mechanistically, we show that PHF6 regulation of EphR is impaired in BFLS mice and in conditional Phf6 knock-out mice. Knockdown of EphR-A phenocopies the PHF6 loss-of-function defects in altering eNSCs, and its forced expression rescues defects of BFLS mice-derived eNSCs. Our data indicate that PHF6 directly promotes Ephrin receptor expression to control eNSC behaviour in the developing brain, and that this pathway is impaired in BFLS.


C3aR signaling and gliosis in response to neurodevelopmental damage in the cerebellum.

  • Kevin G Young‎ et al.
  • Journal of neuroinflammation‎
  • 2019‎

Conditional ablation of the Smarca5 gene in mice severely impairs the postnatal growth of the cerebellum and causes an ataxic phenotype. Comparative gene expression studies indicated that complement-related proteins were upregulated in the cerebellum of Smarca5 mutant mice. Complement proteins play critical roles within innate immune signaling pathways and, in the brain, are produced by glial cells under both normal and pathological conditions. The C3 complement protein-derived signaling peptide, C3a, has been implicated in contributing to both tissue damage and repair in conditions such as multiple sclerosis and stroke. Here, we investigated whether C3a receptor (C3aR) signaling promoted damage or repair in the developing cerebellum of Smarca5 mutant mice.


Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation.

  • Matías Alvarez-Saavedra‎ et al.
  • Nature communications‎
  • 2014‎

Chromatin compaction mediates progenitor to post-mitotic cell transitions and modulates gene expression programs, yet the mechanisms are poorly defined. Snf2h and Snf2l are ATP-dependent chromatin remodelling proteins that assemble, reposition and space nucleosomes, and are robustly expressed in the brain. Here we show that mice conditionally inactivated for Snf2h in neural progenitors have reduced levels of histone H1 and H2A variants that compromise chromatin fluidity and transcriptional programs within the developing cerebellum. Disorganized chromatin limits Purkinje and granule neuron progenitor expansion, resulting in abnormal post-natal foliation, while deregulated transcriptional programs contribute to altered neural maturation, motor dysfunction and death. However, mice survive to young adulthood, in part from Snf2l compensation that restores Engrailed-1 expression. Similarly, Purkinje-specific Snf2h ablation affects chromatin ultrastructure and dendritic arborization, but alters cognitive skills rather than motor control. Our studies reveal that Snf2h controls chromatin organization and histone H1 dynamics for the establishment of gene expression programs underlying cerebellar morphogenesis and neural maturation.


Genome-wide characterisation of Foxa1 binding sites reveals several mechanisms for regulating neuronal differentiation in midbrain dopamine cells.

  • Emmanouil Metzakopian‎ et al.
  • Development (Cambridge, England)‎
  • 2015‎

Midbrain dopamine neuronal progenitors develop into heterogeneous subgroups of neurons, such as substantia nigra pars compacta, ventral tegmental area and retrorubal field, that regulate motor control, motivated and addictive behaviours. The development of midbrain dopamine neurons has been extensively studied, and these studies indicate that complex cross-regulatory interactions between extrinsic and intrinsic molecules regulate a precise temporal and spatial programme of neurogenesis in midbrain dopamine progenitors. To elucidate direct molecular interactions between multiple regulatory factors during neuronal differentiation in mice, we characterised genome-wide binding sites of the forkhead/winged helix transcription factor Foxa1, which functions redundantly with Foxa2 to regulate the differentiation of mDA neurons. Interestingly, our studies identified a rostral brain floor plate Neurog2 enhancer that requires direct input from Otx2, Foxa1, Foxa2 and an E-box transcription factor for its transcriptional activity. Furthermore, the chromatin remodelling factor Smarca1 was shown to function downstream of Foxa1 and Foxa2 to regulate differentiation from immature to mature midbrain dopaminergic neurons. Our genome-wide Foxa1-bound cis-regulatory sequences from ChIP-Seq and Foxa1/2 candidate target genes from RNA-Seq analyses of embryonic midbrain dopamine cells also provide an excellent resource for probing mechanistic insights into gene regulatory networks involved in the differentiation of midbrain dopamine neurons.


Loss of Atrx sensitizes cells to DNA damaging agents through p53-mediated death pathways.

  • Damiano Conte‎ et al.
  • PloS one‎
  • 2012‎

Prevalent cell death in forebrain- and Sertoli cell-specific Atrx knockout mice suggest that Atrx is important for cell survival. However, conditional ablation in other tissues is not associated with increased death indicating that diverse cell types respond differently to the loss of this chromatin remodeling protein. Here, primary macrophages isolated from Atrx(f/f) mice were infected with adenovirus expressing Cre recombinase or β-galactosidase, and assayed for cell survival under different experimental conditions. Macrophages survive without Atrx but undergo rapid apoptosis upon lipopolysaccharide (LPS) activation suggesting that chromatin reorganization in response to external stimuli is compromised. Using this system we next tested the effect of different apoptotic stimuli on cell survival. We observed that survival of Atrx-null cells were similar to wild type cells in response to serum withdrawal, anti-Fas antibody, C2 ceramide or dexamethasone treatment but were more sensitive to 5-fluorouracil (5-FU). Cell survival could be rescued by re-introducing Atrx or by removal of p53 demonstrating the cell autonomous nature of the effect and its p53-dependence. Finally, we demonstrate that multiple primary cell types (myoblasts, embryonic fibroblasts and neurospheres) were sensitive to 5-FU, cisplatin, and UV light treatment. Together, our results suggest that cells lacking Atrx are more sensitive to DNA damaging agents and that this may result in enhanced death during development when cells are at their proliferative peak. Moreover, it identifies potential treatment options for cancers associated with ATRX mutations, including glioblastoma and pancreatic neuroendocrine tumors.


Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice.

  • Matías Alvarez-Saavedra‎ et al.
  • Cell reports‎
  • 2016‎

Exercise has been argued to enhance cognitive function and slow progressive neurodegenerative disease. Although exercise promotes neurogenesis, oligodendrogenesis and adaptive myelination are also significant contributors to brain repair and brain health. Nonetheless, the molecular details underlying these effects remain poorly understood. Conditional ablation of the Snf2h gene impairs cerebellar development producing mice with poor motor function, progressive ataxia, and death between postnatal days 25-45. Here, we show that voluntary running induced an endogenous brain repair mechanism that resulted in a striking increase in hindbrain myelination and the long-term survival of Snf2h cKO mice. Further experiments identified the VGF growth factor as a major driver underlying this effect. VGF neuropeptides promote oligodendrogenesis in vitro, whereas Snf2h cKO mice treated with full-length VGF-encoding adenoviruses removed the requirement of exercise for survival. Together, these results suggest that VGF delivery could represent a therapeutic strategy for cerebellar ataxia and other pathologies of the CNS.


The sub-nucleolar localization of PHF6 defines its role in rDNA transcription and early processing events.

  • Matthew A M Todd‎ et al.
  • European journal of human genetics : EJHG‎
  • 2016‎

Ribosomal RNA synthesis occurs in the nucleolus and is a tightly regulated process that is targeted in some developmental diseases and hyperactivated in multiple cancers. Subcellular localization and immunoprecipitation coupled mass spectrometry demonstrated that a proportion of plant homeodomain (PHD) finger protein 6 (PHF6) protein is localized within the nucleolus and interacts with proteins involved in ribosomal processing. PHF6 sequence variants cause Börjeson-Forssman-Lehmann syndrome (BFLS, MIM#301900) and are also associated with a female-specific phenotype overlapping with Coffin-Siris syndrome (MIM#135900), T-cell acute lymphoblastic leukemia (MIM#613065), and acute myeloid leukemia (MIM#601626); however, very little is known about its cellular function, including its nucleolar role. HEK 293T cells were treated with RNase A, DNase I, actinomycin D, or 5,6-dichloro-β-D-ribofuranosylbenzimadole, followed by immunocytochemistry to determine PHF6 sub-nucleolar localization. We observed RNA-dependent localization of PHF6 to the sub-nucleolar fibrillar center (FC) and dense fibrillar component (DFC), at whose interface rRNA transcription occurs. Subsequent ChIP-qPCR analysis revealed strong enrichment of PHF6 across the entire rDNA-coding sequence but not along the intergenic spacer (IGS) region. When rRNA levels were quantified in a PHF6 gain-of-function model, we observed an overall decrease in rRNA transcription, accompanied by a modest increase in repressive promoter-associated RNA (pRNA) and a significant increase in the expression levels of the non-coding IGS36RNA and IGS39RNA transcripts. Collectively, our results demonstrate a role for PHF6 in carefully mediating the overall levels of ribosome biogenesis within a cell.


Characterization of novel isoforms and evaluation of SNF2L/SMARCA1 as a candidate gene for X-linked mental retardation in 12 families linked to Xq25-26.

  • Maribeth A Lazzaro‎ et al.
  • BMC medical genetics‎
  • 2008‎

Mutations in genes whose products modify chromatin structure have been recognized as a cause of X-linked mental retardation (XLMR). These genes encode proteins that regulate DNA methylation (MeCP2), modify histones (RSK2 and JARID1C), and remodel nucleosomes through ATP hydrolysis (ATRX). Thus, genes encoding other chromatin modifying proteins should also be considered as disease candidate genes. In this work, we have characterized the SNF2L gene, encoding an ATP-dependent chromatin remodeling protein of the ISWI family, and sequenced the gene in patients from 12 XLMR families linked to Xq25-26.


ATRX affects the repair of telomeric DSBs by promoting cohesion and a DAXX-dependent activity.

  • Courtney A Lovejoy‎ et al.
  • PLoS biology‎
  • 2020‎

Alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX), a DAXX (death domain-associated protein) interacting protein, is often lost in cells using the alternative lengthening of telomeres (ALT) pathway, but it is not known how ATRX loss leads to ALT. We report that ATRX deletion from mouse cells altered the repair of telomeric double-strand breaks (DSBs) and induced ALT-like phenotypes, including ALT-associated promyelocytic leukemia (PML) bodies (APBs), telomere sister chromatid exchanges (T-SCEs), and extrachromosomal telomeric signals (ECTSs). Mechanistically, we show that ATRX affects telomeric DSB repair by promoting cohesion of sister telomeres and that loss of ATRX in ALT cells results in diminished telomere cohesion. In addition, we document a role for DAXX in the repair of telomeric DSBs. Removal of telomeric cohesion in combination with DAXX deficiency recapitulates all telomeric DSB repair phenotypes associated with ATRX loss. The data reveal that ATRX has an effect on telomeric DSB repair and that this role involves both telomere cohesion and a DAXX-dependent pathway.


A Notch-Gli2 axis sustains Hedgehog responsiveness of neural progenitors and Müller glia.

  • Randy Ringuette‎ et al.
  • Developmental biology‎
  • 2016‎

Neurogenesis is regulated by the dynamic and coordinated activity of several extracellular signalling pathways, but the basis for crosstalk between these pathways remains poorly understood. Here we investigated regulatory interactions between two pathways that are each required for neural progenitor cell maintenance in the postnatal retina; Hedgehog (Hh) and Notch signalling. Both pathways are activated in progenitor cells in the postnatal retina based on the co-expression of fluorescent pathway reporter transgenes at the single cell level. Disrupting Notch signalling, genetically or pharmacologically, induces a rapid downregulation of all three Gli proteins and inhibits Hh-induced proliferation. Ectopic Notch activation, while not sufficient to promote Hh signalling or proliferation, increases Gli2 protein. We show that Notch regulation of Gli2 in Müller glia renders these cells competent to proliferate in response to Hh. These data suggest that Notch signalling converges on Gli2 to prime postnatal retinal progenitor cells and Müller glia to proliferate in response to Hh.


Recovery from impaired muscle growth arises from prolonged postnatal accretion of myonuclei in Atrx mutant mice.

  • Michael S Huh‎ et al.
  • PloS one‎
  • 2017‎

Reduced muscle mass due to pathological development can occur through several mechanisms, including the loss or reduced proliferation of muscle stem cells. Muscle-specific ablation of the α-thalassemia mental retardation syndrome mutant protein, Atrx, in transgenic mice results in animals with a severely reduced muscle mass at three weeks of age; yet this muscle mass reduction resolves by adult age. Here, we explore the cellular mechanism underlying this effect. Analysis of Atrx mutant mice included testing for grip strength and rotorod performance. Muscle fiber length, fiber volume and numbers of myofiber-associated nuclei were determined from individual EDL or soleus myofibers isolated at three, five, or eight weeks. Myofibers from three week old Atrx mutant mice are smaller with fewer myofiber-associated nuclei and reduced volume compared to control animals, despite similar fiber numbers. Nonetheless, the grip strength of Atrx mutant mice was comparable to control mice when adjusted for body weight. Myofiber volume remained smaller at five weeks, becoming comparable to controls by 8 weeks of age. Concomitantly, increased numbers of myofiber-associated nuclei and Ki67+ myoblasts indicated that the recovery of muscle mass likely arises from the prolonged accretion of new myonuclei. This suggests that under disease conditions the muscle satellite stem cell niche can remain in a prolonged active state, allowing for the addition of a minimum number of myonuclei required to achieve a normal muscle size.


A new mouse model of ATR-X syndrome carrying a common patient mutation exhibits neurological and morphological defects.

  • Rebekah Tillotson‎ et al.
  • Human molecular genetics‎
  • 2023‎

ATRX is a chromatin remodelling ATPase that is involved in transcriptional regulation, DNA damage repair and heterochromatin maintenance. It has been widely studied for its role in ALT-positive cancers, but its role in neurological function remains elusive. Hypomorphic mutations in the X-linked ATRX gene cause a rare form of intellectual disability combined with alpha-thalassemia called ATR-X syndrome in hemizygous males. Clinical features also include facial dysmorphism, microcephaly, short stature, musculoskeletal defects and genital abnormalities. As complete deletion of ATRX in mice results in early embryonic lethality, the field has largely relied on conditional knockout models to assess the role of ATRX in multiple tissues. Given that null alleles are not found in patients, a more patient-relevant model was needed. Here, we have produced and characterized the first patient mutation knock-in model of ATR-X syndrome, carrying the most common causative mutation, R246C. This is one of a cluster of missense mutations located in the chromatin-binding domain and disrupts its function. The knock-in mice recapitulate several aspects of the patient disorder, including craniofacial defects, microcephaly, reduced body size and impaired neurological function. They provide a powerful model for understanding the molecular mechanisms underlying ATR-X syndrome and testing potential therapeutic strategies.


ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome.

  • Shigeki Iwase‎ et al.
  • Nature structural & molecular biology‎
  • 2011‎

ATR-X (alpha-thalassemia/mental retardation, X-linked) syndrome is a human congenital disorder that causes severe intellectual disabilities. Mutations in the ATRX gene, which encodes an ATP-dependent chromatin-remodeler, are responsible for the syndrome. Approximately 50% of the missense mutations in affected persons are clustered in a cysteine-rich domain termed ADD (ATRX-DNMT3-DNMT3L, ADD(ATRX)), whose function has remained elusive. Here we identify ADD(ATRX) as a previously unknown histone H3-binding module, whose binding is promoted by lysine 9 trimethylation (H3K9me3) but inhibited by lysine 4 trimethylation (H3K4me3). The cocrystal structure of ADD(ATRX) bound to H3(1-15)K9me3 peptide reveals an atypical composite H3K9me3-binding pocket, which is distinct from the conventional trimethyllysine-binding aromatic cage. Notably, H3K9me3-pocket mutants and ATR-X syndrome mutants are defective in both H3K9me3 binding and localization at pericentromeric heterochromatin; thus, we have discovered a unique histone-recognition mechanism underlying the ATR-X etiology.


Sensory Experience Modulates Atrx-mediated Neuronal Integrity in the Mouse Retina.

  • Pamela S Lagali‎ et al.
  • Neuroscience‎
  • 2021‎

Mutation of the α-thalassemia/mental retardation syndrome X-linked protein, ATRX, causes intellectual disability and is associated with pleiotropic defects including ophthalmological abnormalities. We have previously demonstrated that Atrx deficiency in the mouse retina leads to the selective loss of inhibitory interneurons and inner retinal dysfunction. Onset of the amacrine cell neurodegenerative phenotype in Atrx-deficient retinas occurs postnatally after neuronal specification, and coincides with eye opening. Given this timing, we sought to interrogate the influence of light-dependent visual signaling on Atrx-mediated neuronal survival and function in the mouse retina. Retina-specific Atrx conditional knockout (cKO) mice were subjected to light deprivation using two different paradigms: (1) a dark-rearing regime, and (2) genetic deficiency of metabotropic glutamate receptor 6 (mGluR6) to block the ON retinal signaling pathway. Scotopic electroretinography was performed for adult dark-reared Atrx cKO mice and controls to measure retinal neuron function in vivo. Retinal immunohistochemistry and enumeration of amacrine cells were performed for both light deprivation paradigms. We observed milder normalized a-wave, b-wave and oscillatory potential (OP) deficits in electroretinograms of dark-reared Atrx cKO mice compared to light-exposed counterparts. In addition, amacrine cell loss was partially limited by genetic restriction of retinal signaling through the ON pathway. Our results suggest that the temporal features of the Atrx cKO phenotype are likely due to a combined effect of light exposure upon eye opening and coincident developmental processes impacting the retinal circuitry. In addition, this study reveals a novel activity-dependent role for Atrx in mediating post-replicative neuronal integrity in the CNS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: