2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Validation of StrabisPIX, a Mobile Application for Home Measurement of Ocular Alignment.

  • Warachaya Phanphruk‎ et al.
  • Translational vision science & technology‎
  • 2019‎

StrabisPIX is a smartphone application that allows clinicians to prescribe a series of self-obtained images of head position and eye alignment in nine positions of gaze that are uploaded onto a secure platform for clinician review. This study evaluates the clinical utility of this application.


Alzheimer's disease amyloid-beta links lens and brain pathology in Down syndrome.

  • Juliet A Moncaster‎ et al.
  • PloS one‎
  • 2010‎

Down syndrome (DS, trisomy 21) is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans. In DS, triplication of chromosome 21 invariably includes the APP gene (21q21) encoding the Alzheimer's disease (AD) amyloid precursor protein (APP). Triplication of the APP gene accelerates APP expression leading to cerebral accumulation of APP-derived amyloid-beta peptides (Abeta), early-onset AD neuropathology, and age-dependent cognitive sequelae. The DS phenotype complex also includes distinctive early-onset cerulean cataracts of unknown etiology. Previously, we reported increased Abeta accumulation, co-localizing amyloid pathology, and disease-linked supranuclear cataracts in the ocular lenses of subjects with AD. Here, we investigate the hypothesis that related AD-linked Abeta pathology underlies the distinctive lens phenotype associated with DS. Ophthalmological examinations of DS subjects were correlated with phenotypic, histochemical, and biochemical analyses of lenses obtained from DS, AD, and normal control subjects. Evaluation of DS lenses revealed a characteristic pattern of supranuclear opacification accompanied by accelerated supranuclear Abeta accumulation, co-localizing amyloid pathology, and fiber cell cytoplasmic Abeta aggregates (approximately 5 to 50 nm) identical to the lens pathology identified in AD. Peptide sequencing, immunoblot analysis, and ELISA confirmed the identity and increased accumulation of Abeta in DS lenses. Incubation of synthetic Abeta with human lens protein promoted protein aggregation, amyloid formation, and light scattering that recapitulated the molecular pathology and clinical features observed in DS lenses. These results establish the genetic etiology of the distinctive lens phenotype in DS and identify the molecular origin and pathogenic mechanism by which lens pathology is expressed in this common chromosomal disorder. Moreover, these findings confirm increased Abeta accumulation as a key pathogenic determinant linking lens and brain pathology in both DS and AD.


Improved adherence and treatment outcomes with an engaging, personalized digital therapeutic in amblyopia.

  • Scott Xiao‎ et al.
  • Scientific reports‎
  • 2020‎

Given the prevalence of poor adherence to therapy and the biases of self-reporting across healthcare, we hypothesized that an engaging, personalized therapy may improve adherence and treatment outcomes in the home. We tested this hypothesis in the initial indication of amblyopia, a neurodevelopmental disorder for which available treatments are limited by low adherence. We designed a novel digital therapeutic that modifies patient-selected cinematic content in real-time into therapeutic visual input, while objectively monitoring adherence. The therapeutic design integrated a custom-designed headset that delivers precise visual input to each eye, computational algorithms that apply real-time therapeutic modifications to source content, a cloud-based content management system that enables treatment in the home, and a broad library of licensed content. In a proof-of-concept human study on the therapeutic, we found that amblyopic eye vision improved significantly after 12 weeks of treatment, with higher adherence than that of available treatments. These initial results support the utility of personalized therapy in amblyopia and may have broader relevance for improving treatment outcomes in additional indications.


TUBB3 Arg262His causes a recognizable syndrome including CFEOM3, facial palsy, joint contractures, and early-onset peripheral neuropathy.

  • Mary C Whitman‎ et al.
  • Human genetics‎
  • 2021‎

Microtubules are formed from heterodimers of alpha- and beta-tubulin, each of which has multiple isoforms encoded by separate genes. Pathogenic missense variants in multiple different tubulin isoforms cause brain malformations. Missense mutations in TUBB3, which encodes the neuron-specific beta-tubulin isotype, can cause congenital fibrosis of the extraocular muscles type 3 (CFEOM3) and/or malformations of cortical development, with distinct genotype-phenotype correlations. Here, we report fourteen individuals from thirteen unrelated families, each of whom harbors the identical NM_006086.4 (TUBB3):c.785G>A (p.Arg262His) variant resulting in a phenotype we refer to as the TUBB3 R262H syndrome. The affected individuals present at birth with ptosis, ophthalmoplegia, exotropia, facial weakness, facial dysmorphisms, and, in most cases, distal congenital joint contractures, and subsequently develop intellectual disabilities, gait disorders with proximal joint contractures, Kallmann syndrome (hypogonadotropic hypogonadism and anosmia), and a progressive peripheral neuropathy during the first decade of life. Subsets may also have vocal cord paralysis, auditory dysfunction, cyclic vomiting, and/or tachycardia at rest. All fourteen subjects share a recognizable set of brain malformations, including hypoplasia of the corpus callosum and anterior commissure, basal ganglia malformations, absent olfactory bulbs and sulci, and subtle cerebellar malformations. While similar, individuals with the TUBB3 R262H syndrome can be distinguished from individuals with the TUBB3 E410K syndrome by the presence of congenital and acquired joint contractures, an earlier onset peripheral neuropathy, impaired gait, and basal ganglia malformations.


Durable recovery from amblyopia with donepezil.

  • Carolyn Wu‎ et al.
  • Scientific reports‎
  • 2023‎

An elevated threshold for neuroplasticity limits visual gains with treatment of residual amblyopia in older children and adults. Acetylcholinesterase inhibitors (AChEI) can enable visual neuroplasticity and promote recovery from amblyopia in adult mice. Motivated by these promising findings, we sought to determine whether donepezil, a commercially available AChEI, can enable recovery in older children and adults with residual amblyopia. In this open-label pilot efficacy study, 16 participants (mean age 16 years; range 9-37 years) with residual anisometropic and/or strabismic amblyopia were treated with daily oral donepezil for 12 weeks. Donepezil dosage was started at 2.5 or 5.0 mg based on age and increased by 2.5 mg if the amblyopic eye visual acuity did not improve by 1 line from the visit 4 weeks prior for a maximum dosage of 7.5 or 10 mg. Participants < 18 years of age further patched the dominant eye. The primary outcome was visual acuity in the amblyopic eye at 22 weeks, 10 weeks after treatment was discontinued. Mean amblyopic eye visual acuity improved 1.2 lines (range 0.0-3.0), and 4/16 (25%) improved by ≥ 2 lines after 12 weeks of treatment. Gains were maintained 10 weeks after cessation of donepezil and were similar for children and adults. Adverse events were mild and self-limited. Residual amblyopia improves in older children and adults treated with donepezil, supporting the concept that the critical window of visual cortical plasticity can be pharmacologically manipulated to treat amblyopia. Placebo-controlled studies are needed.


Using high-resolution functional MRI to differentiate impacts of strabismic and anisometropic amblyopia on evoked ocular dominance activity in humans.

  • Shahin Nasr‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

We employed high-resolution functional MRI (fMRI) to distinguish the impacts of anisometropia and strabismus (the two most frequent causes of amblyopia) on the evoked ocular dominance (OD) response. Sixteen amblyopic participants (8 females), comprising 8 individuals with strabismus, 7 with anisometropia, 1 with deprivational amblyopia, along with 8 individuals with normal visual acuity (1 female), participated in this study for whom, we measured the difference between the response to stimulation of the two eyes, across early visual areas (V1-V4). In controls, as expected from the organization of OD columns, the evoked OD response formed a striped pattern that was mostly confined to V1. Compared to controls, the OD response in amblyopic participants formed larger fused patches that extended into downstream visual areas. Moreover, both anisometropic and strabismic participants showed stronger OD responses in V1, as well as in downstream visual areas V2-V4. Although this increase was most pronounced in V1, the correlation between the OD response level and the interocular visual acuity difference (measured behaviorally) was stronger in higher-level visual areas (V2-V4). Beyond these common effects, and despite similar densities of amblyopia between the anisometropic and strabismic participants, we found a greater increase in the size of V1 portion that responded preferentially to fellow eye stimulation in anisometropic compared to strabismic individuals. We also found a greater difference between the amplitudes of the response to binocular stimulation, in those regions that responded preferentially to the fellow vs. amblyopic eye, in anisometropic compared to strabismic subjects. In contrast, strabismic subjects demonstrated increased correlation between the OD responses evoked within V1 superficial and deep cortical depths, whereas anisometropic subjects did not. These results provide some of the first direct functional evidence for distinct impacts of strabismus and anisometropia on the mesoscale functional organization of the human visual system, thus extending what was inferred previously about amblyopia from animal models.


Loss of MAFB Function in Humans and Mice Causes Duane Syndrome, Aberrant Extraocular Muscle Innervation, and Inner-Ear Defects.

  • Jong G Park‎ et al.
  • American journal of human genetics‎
  • 2016‎

Duane retraction syndrome (DRS) is a congenital eye-movement disorder defined by limited outward gaze and retraction of the eye on attempted inward gaze. Here, we report on three heterozygous loss-of-function MAFB mutations causing DRS and a dominant-negative MAFB mutation causing DRS and deafness. Using genotype-phenotype correlations in humans and Mafb-knockout mice, we propose a threshold model for variable loss of MAFB function. Postmortem studies of DRS have reported abducens nerve hypoplasia and aberrant innervation of the lateral rectus muscle by the oculomotor nerve. Our studies in mice now confirm this human DRS pathology. Moreover, we demonstrate that selectively disrupting abducens nerve development is sufficient to cause secondary innervation of the lateral rectus muscle by aberrant oculomotor nerve branches, which form at developmental decision regions close to target extraocular muscles. Thus, we present evidence that the primary cause of DRS is failure of the abducens nerve to fully innervate the lateral rectus muscle in early development.


Recurrent Rare Copy Number Variants Increase Risk for Esotropia.

  • Mary C Whitman‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2020‎

To determine whether rare copy number variants (CNVs) increase risk for comitant esotropia.


Genome-Wide Association Study Identifies a Susceptibility Locus for Comitant Esotropia and Suggests a Parent-of-Origin Effect.

  • Sherin Shaaban‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2018‎

To identify genetic variants conferring susceptibility to esotropia. Esotropia is the most common form of comitant strabismus, has its highest incidence in European ancestry populations, and is believed to be inherited as a complex trait.


HOXB1 founder mutation in humans recapitulates the phenotype of Hoxb1-/- mice.

  • Bryn D Webb‎ et al.
  • American journal of human genetics‎
  • 2012‎

Members of the highly conserved homeobox (HOX) gene family encode transcription factors that confer cellular and tissue identities along the antero-posterior axis of mice and humans. We have identified a founder homozygous missense mutation in HOXB1 in two families from a conservative German American population. The resulting phenotype includes bilateral facial palsy, hearing loss, and strabismus and correlates extensively with the previously reported Hoxb1(-/-) mouse phenotype. The missense variant is predicted to result in the substitution of a cysteine for an arginine at amino acid residue 207 (Arg207Cys), which corresponds to the highly conserved Arg5 of the homeodomain. Arg5 interacts with thymine in the minor groove of DNA through hydrogen bonding and electrostatic attraction. Molecular modeling and an in vitro DNA-protein binding assay predict that the mutation would disrupt these interactions, destabilize the HOXB1:PBX1:DNA complex, and alter HOXB1 transcriptional activity.


Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance.

  • Max A Tischfield‎ et al.
  • Cell‎
  • 2010‎

We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific beta-tubulin isotype III, result in a spectrum of human nervous system disorders that we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show that the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate that normal TUBB3 is required for axon guidance and maintenance in mammals.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: