Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

CHF6001 Inhibits NF-κB Activation and Neutrophilic Recruitment in LPS-Induced Lung Inflammation in Mice.

  • Fabio F Stellari‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Inhibitors of phosphodiesterase 4 (PDE4) are potent anti-inflammatory agents, inhibiting the production of inflammatory mediators through the elevation of intracellular cAMP concentrations. We studied the activity of a novel PDE4 inhibitor, CHF6001, both in vitro in human cells and in vivo, using bioluminescence imaging (BLI) in mice lung inflammation. Mice transiently transfected with the luciferase gene under the control of an NF-κB responsive element (NF-κB-luc) have been used to assess the in vivo anti-inflammatory activity of CHF6001 in lipopolysaccharide (LPS)-induced lung inflammation. BLI as well as inflammatory cells and the concentrations of pro-inflammatory cytokines were monitored in bronchoalveolar lavage fluids (BALF) while testing in vitro its ability to affect the production of leukotriene B4 (LTB4), measured by LC/MS/MS, by LPS/LPS/N-formyl--methionyl--leucyl-phenylalanine (fMLP)-activated human blood. CHF6001 inhibited the production of LTB4 in LPS/fMLP-activated human blood at sub-nanomolar concentrations. LPS-induced an increase of BLI signal in NF-κB-luc mice, and CHF6001 administered by dry powder inhalation decreased in parallel luciferase signal, cell airway infiltration, and pro-inflammatory cytokine concentrations in BALF. The results obtained provide in vitro and in vivo evidence of the anti-inflammatory activity of the potent PDE4 inhibitor CHF6001, showing that with a topical administration that closely mimics inhalation in humans, it efficiently disrupts the NF-κB activation associated with LPS challenge, an effect that may be relevant for the prevention of exacerbation episodes in chronic obstructive pulmonary disease subjects.


Azithromycin inhibits nuclear factor-κB activation during lung inflammation: an in vivo imaging study.

  • Fabio F Stellari‎ et al.
  • Pharmacology research & perspectives‎
  • 2014‎

We studied in vivo the potential involvement of nuclear factor-κB (NF-κB) pathway in the molecular mechanism of the anti-inflammatory and immunomodulatory activity of azithromycin in the lung. Mice transiently transfected with the luciferase gene under the control of a NF-κB responsive element were used to assess in vivo NF-κB activation by bioluminescence imaging. Bioluminescence as well as inflammatory cells and concentrations of proinflammatory cytokines in bronchoalveolar lavage fluids, were monitored in an acute model of pulmonary inflammation resulting from intratracheal instillation of lipopolysaccharide. Lipopolysaccharide (LPS) instillation induced a marked increase in lung bioluminescence in mice transiently transfected with the luciferase gene under the control of an NF-κB responsive element, with significant luciferase expression in resident cells such as endothelial and epithelial cells, as assessed by duoplex immunofluorescence staining. Activation of NF-κB and inflammatory cell lung infiltration linearly correlated when different doses of bortezomib were used to inhibit NF-κB activation. Pretreatment with azithromycin significantly decreased lung bioluminescence and airways cell infiltration induced by LPS, also reducing proinflammatory cytokines concentrations in bronchoalveolar lavages and inhibiting NF-κB nuclear translocation. The results obtained using a novel approach to monitor NF-κB activation, provided, for the first time, in vivo evidence that azithromycin treatment results in pulmonary anti-inflammatory activity associated with the inhibition of NF-κB activation in the lung.


Modeling pulmonary fibrosis through bleomycin delivered by osmotic minipump: a new histomorphometric method of evaluation.

  • Francesca Ravanetti‎ et al.
  • American journal of physiology. Lung cellular and molecular physiology‎
  • 2020‎

The systemic delivery of bleomycin (BLM) to mice through subcutaneously implanted osmotic minipumps may be used to experimentally mimic the typical features of systemic sclerosis and related interstitial lung diseases. The published studies on this model principally have focused on induced dermal modifications, probably because lung lesions are typically mild, subpleurally localized, and difficult to analyze. The use of high BLM doses to increase their severity has been proposed but is ethically questionable because of the compromising of animal welfare. We propose a tailored histomorphometric method suitable to detect and quantify this type of mild lung lesions. Using a two-step automated image analysis, a peripheral region of interest with a depth of 250 µm from the pleural edge was defined on whole slide images, and the fibrotic foci were histomorphometrically characterized. The effects of different BLM doses on lung alterations were evaluated in C57BL/6 mice and 60 U/kg resulted in a fair compromise between fibrotic lesions and animal welfare. This dose was also tested in time course experiments. The analysis revealed a peak of histological fibrotic-like alterations, cytokine expression, metalloprotease, and macrophagic activation between the 21st and 28th day after pump implant. The induced dermal fibrosis was characterized by the progressive loss of the white dermal adipose layer, an increase in dermal thickness, dermal hyperplasia, and more compacted collagen fibers. Despite the trend toward spontaneous resolution, our model allowed a double organ readout of the BLM effect and the identification of a therapeutic window for testing pharmacological compounds without using life-threatening doses.


BoHV-4-Based Vector Single Heterologous Antigen Delivery Protects STAT1(-/-) Mice from Monkeypoxvirus Lethal Challenge.

  • Valentina Franceschi‎ et al.
  • PLoS neglected tropical diseases‎
  • 2015‎

Monkeypox virus (MPXV) is the etiological agent of human (MPX). It is an emerging orthopoxvirus zoonosis in the tropical rain forest of Africa and is endemic in the Congo-basin and sporadic in West Africa; it remains a tropical neglected disease of persons in impoverished rural areas. Interaction of the human population with wildlife increases human infection with MPX virus (MPXV), and infection from human to human is possible. Smallpox vaccination provides good cross-protection against MPX; however, the vaccination campaign ended in Africa in 1980, meaning that a large proportion of the population is currently unprotected against MPXV infection. Disease control hinges on deterring zoonotic exposure to the virus and, barring that, interrupting person-to-person spread. However, there are no FDA-approved therapies against MPX, and current vaccines are limited due to safety concerns. For this reason, new studies on pathogenesis, prophylaxis and therapeutics are still of great interest, not only for the scientific community but also for the governments concerned that MPXV could be used as a bioterror agent. In the present study, a new vaccination strategy approach based on three recombinant bovine herpesvirus 4 (BoHV-4) vectors, each expressing different MPXV glycoproteins, A29L, M1R and B6R were investigated in terms of protection from a lethal MPXV challenge in STAT1 knockout mice. BoHV-4-A-CMV-A29LgD106ΔTK, BoHV-4-A-EF1α-M1RgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK were successfully constructed by recombineering, and their capacity to express their transgene was demonstrated. A small challenge study was performed, and all three recombinant BoHV-4 appeared safe (no weight-loss or obvious adverse events) following intraperitoneal administration. Further, BoHV-4-A-EF1α-M1RgD106ΔTK alone or in combination with BoHV-4-A-CMV-A29LgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK, was shown to be able to protect, 100% alone and 80% in combination, STAT1(-/-) mice against mortality and morbidity. This work demonstrated the efficacy of BoHV-4 based vectors and the use of BoHV-4 as a vaccine-vector platform.


Generation and characterization of the first immortalized alpaca cell line suitable for diagnostic and immunization studies.

  • Valentina Franceschi‎ et al.
  • PloS one‎
  • 2014‎

Raising of alpacas as exotic livestock for wool and meat production and as companion animals is growing in importance in the United States, Europe and Australia. Furthermore the alpaca, as well as the rest of the camelids, possesses the peculiarity of producing single-chain antibodies from which nanobodies can be generated. Nanobodies, due to their structural simplicity and reduced size, are very versatile in terms of manipulation and bio-therapeutic exploitation. In fact the biotech companies involved in nanobody production and application continue to grow in number and size. Hence, the development of reagents and tools to assist in the further growth of this new scientific and entrepreneurial reality is becoming a necessity. These are needed mainly to address alpaca disease diagnosis and prophylaxis, and to develop alpaca immunization strategies for nanobody generation. For instance an immortalized alpaca cell line would be extremely valuable. In the present work the first stabilized alpaca cell line from alpaca skin stromal cells (ASSCs) was generated and characterized. This cell line was shown to be suitable for replication of viruses bovine herpesvirus-1, bovine viral diarrhea virus and caprine herpesvirus-1 and the endocellular parasite Neospora caninum. Moreover ASSCs were easy to transfect and transduce by several methods. These two latter characteristics are extremely useful when recombinant antigens need to be produced in a host homologous system. This work could be considered as a starting point for the expansion of the biotechnologies linked to alpaca farming and industry.


Heterologous Matrix Metalloproteinase Gene Promoter Activity Allows In Vivo Real-time Imaging of Bleomycin-Induced Lung Fibrosis in Transiently Transgenized Mice.

  • Fabio Franco Stellari‎ et al.
  • Frontiers in immunology‎
  • 2017‎

Idiopathic pulmonary fibrosis is a very common interstitial lung disease derived from chronic inflammatory insults, characterized by massive scar tissue deposition that causes the progressive loss of lung function and subsequent death for respiratory failure. Bleomycin is used as the standard agent to induce experimental pulmonary fibrosis in animal models for the study of its pathogenesis. However, to visualize the establishment of lung fibrosis after treatment, the animal sacrifice is necessary. Thus, the aim of this study was to avoid this limitation by using an innovative approach based on a double bleomycin treatment protocol, along with the in vivo images analysis of bleomycin-treated mice. A reporter gene construct, containing the luciferase open reading frame under the matrix metalloproteinase-1 promoter control region, was tested on double bleomycin-treated mice to investigate, in real time, the correlation between bleomycin treatment, inflammation, tissue remodeling and fibrosis. Bioluminescence emitted by the lungs of bleomycin-treated mice, corroborated by fluorescent molecular tomography, successfully allowed real time monitoring of fibrosis establishment. The reporter gene technology experienced in this work could represent an advanced functional approach for real time non-invasive assessment of disease evolution during therapy, in a reliable and translational living animal model.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: